May 25th, 2016

Interview with Svetlana Kharlamova, ­Sr. Data Scientist, Grainger

RSS icon RSS Category: Community, Customer, Events
Svetlana Kharlamov(data scientist)

During Open Tour Chicago we conducted a series of interviews with data scientists attending the conference. This is the first of a multipart series recapping our conversations.
Be sure to keep an eye out for updates by checking our website or following us on Twitter @h2oai.

Svetlana Kharlamov(data scientist)
H2O.ai: How did you become a data scientist?
Kharlamova: I’m a physicist.
H2O.ai: Okay.
Kharlamova: I came here from the academia of physics. I worked for seven years in academia for physics and math, and four years ago I switched to finance to be more of a math person than a physics person.
H2O.ai: I see.
Kharlamova: And from finance I came to the data industry. At that time data science was booming.
H2O.ai: Oh, okay.
Kharlamova: And I got excited with all new the stuff and technologies coming up, and here I am.
H2O.ai: Okay, nice. So what business do you work for now?
Kharlamova: I work for Grainger. We’re focused on equipment distribution; serving as a connector between manufacturing plants, factories and consumers.
H2O.ai: So what are some of the problems that you guys are looking to solve?
Kharlamova: Building recommendation engines for customers. For that you need to leverage natural language processing and positive logic.
H2O.ai: What resources do you use to stay on top of the information in the data science world? Are there blogs that you read or like, or places that you go?
Kharlamova: Staff communities and data science communities are important sources of information.
H2O.ai: Yes. That’s great. And is there any advice that you would have for someone who’s an up and coming data scientist, or someone who’s just generally interested in the field?
Kharlamova: Advice to somebody who’s generally interested in the field?
H2O.ai: Yes, about becoming a data scientist.
Kharlamova: It’s a difficult question, because if a person takes a one year course on Coursera or somewhere else on data science, it doesn’t mean that they’re a data scientist yet, because you need to see the problem in the big picture.
H2O.ai: Yes.
Kharlamova: You need to be able to identify the challenges, the problem and various solutions. You cannot explore everything. You need to narrow down your choice.
H2O.ai: Yes, okay.
Kharlamova: You also need to have substantial knowledge of mathematics, statistics and computer science. But understand that you don’t need to immediately start using a sophisticated random forest model. Maybe you can just use simple algebra. Maybe it’s a question of two plus two.
H2O.ai: Right.
Kharlamova: And then you don’t need all these assumptions and approximations. Because I’m a physicist, I like a defined correct answer much more than something fuzzy. To be successful as a data scientist you need to decide how best to approach a problem then find a solution that’s as simple as possible.
H2O.ai: Okay. I see. That’s great advice. So it’s not just about having the knowledge, but it’s also about having an approach that is, like you said, simple, that you can probably use more often to provide a clear answer. That’s great, great advice.

Leave a Reply

+
H2O Wave joins Hacktoberfest

It’s that time of the year again. A great initiative by DigitalOcean called Hacktoberfest that aims to bring

September 29, 2022 - by Martin Turoci
+
Three Keys to Ethical Artificial Intelligence in Your Organization

There’s certainly been no shortage of examples of AI gone bad over the past few

September 23, 2022 - by H2O.ai Team
+
Using GraphQL, HTTPX, and asyncio in H2O Wave

Today, I would like to cover the most basic use case for H2O Wave, which is

September 21, 2022 - by Martin Turoci
+
머신러닝 자동화 솔루션 H2O Driveless AI를 이용한 뇌에서의 성차 예측

Predicting Gender Differences in the Brain Using Machine Learning Automation Solution H2O Driverless AI 아동기 뇌인지

August 29, 2022 - by H2O.ai Team
+
Make with H2O.ai Recap: Validation Scheme Best Practices

Data Scientist and Kaggle Grandmaster, Dmitry Gordeev, presented at the Make with H2O.ai session on

August 23, 2022 - by Blair Averett
+
Integrating VSCode editor into H2O Wave

Let’s have a look at how to provide our users with a truly amazing experience

August 18, 2022 - by Martin Turoci

Start Your Free Trial