March 27th, 2014

Google-scale Machine Learning & Deep Learning gets principal platform in Apache Mahout with Spark and H2O

RSS icon RSS Category: Uncategorized [EN]
mahout-logo

H2O’s vision is direct and simple: scaling machine learning for powering intelligent applications. Our focus is distributed machine learning and a fully-featured set of industrial grade algorithms.
Apache Mahout is where people learn their chops in Machine Learning. Like R, It’s the “hello world” first place many new users get exposed to algorithms on big data. Making that experience beautiful, accessible and value-driven will make machine-learning ubiquitous and Mahout a movement to rival the success & utility of say, lucene and hadoop.
Apache Spark has great developer momentum and in-memory makes it ideal for implementing and extending algorithms.
Our vision and motivation is to re-ignite the community & double down on the identical founding visions of Mahout and H2O. Under one umbrella, Mahout can power intelligent applications for the enterprises and users.
Creating great software is hard, creating passionate communities is harder. Our belief is that a product is not complete without it’s community. This convergence will make Mahout the principal platform for integrating multiple ways of mining insights from data.
These are exciting times for Mahout. These initiatives will drive momentum to the Mahout as the umbrella platform for Machine Learning. It’s success will drive wide-scale adoption of scalable machine learning algorithms in the enterprise & H2O is committed to that unified vision. Spark is a terrific in-memory platform for that. Stratosphere will be another. Scala, R, Python, JS, Java and the Matrix APIs make it a polyglot modeling & programming universe. This will be fun.
We are excited at the possibilities of this convergence. A fan of Mahout ‘s vision and how it captured the imagination of machine learning enthusiasts over the years.. (Still fondly recollect Isabel’s spirited talk at ApacheCon years ago!) A real product, hacker and an open source developer culture is the need. The R community has also been looking for a package that solved distributed frames (in-memory) & parallel packages for the algorithms behind. Our team has executed on a lots of these inspirations fast & furiously in open source over the past two years. We hope to enrich & fulfill the day-to-day workflows of the Machine Learning users world-wide through Apache Mahout.
It all starts with the end (ml) user experience and how we can make it better.
mahout-logo-poweredby-55

Leave a Reply

+
H2O Wave joins Hacktoberfest

It’s that time of the year again. A great initiative by DigitalOcean called Hacktoberfest that aims to bring

September 29, 2022 - by Martin Turoci
+
Three Keys to Ethical Artificial Intelligence in Your Organization

There’s certainly been no shortage of examples of AI gone bad over the past few

September 23, 2022 - by H2O.ai Team
+
Using GraphQL, HTTPX, and asyncio in H2O Wave

Today, I would like to cover the most basic use case for H2O Wave, which is

September 21, 2022 - by Martin Turoci
+
머신러닝 자동화 솔루션 H2O Driveless AI를 이용한 뇌에서의 성차 예측

Predicting Gender Differences in the Brain Using Machine Learning Automation Solution H2O Driverless AI 아동기 뇌인지

August 29, 2022 - by H2O.ai Team
+
Make with H2O.ai Recap: Validation Scheme Best Practices

Data Scientist and Kaggle Grandmaster, Dmitry Gordeev, presented at the Make with H2O.ai session on

August 23, 2022 - by Blair Averett
+
Integrating VSCode editor into H2O Wave

Let’s have a look at how to provide our users with a truly amazing experience

August 18, 2022 - by Martin Turoci

Start Your Free Trial