June 12th, 2018

Time is Money! Automate Your Time-Series Forecasts with Driverless AI

RSS icon RSS Category: H2O Driverless AI
Details about H2o ai experiment

Time-series forecasting is one of the most common and important tasks in business analytics. There are many real-world applications like sales, weather, stock market, energy demand, just to name a few. We strongly believe that automation can help our users deliver business value in a timely manner. Therefore, once again we translated our Kaggle Grand Masters’ time-series recipes into our automatic machine learning platform Driverless AI (version 1.2). This blog post introduces the new time-series functionality with a simple sales forecasting example.
The key features/recipes that make automation possible are:

  • Automatic handling of time groups (e.g. different stores and departments)
  • Robust time-series validation
    • Accounts for gaps and forecast horizon
    • Uses past information only (i.e. no data leakage)
  • Time-series specific feature engineering recipes
    • Date features like day of week, day of month etc.
    • AutoRegressive features like optimal lag and lag-features interaction
    • Different types of exponentially weighted moving averages
    • Aggregation of past information (different time groups and time intervals)
    • Target transformations and differentiation
  • Integration with existing feature engineering functions (recipes and optimization)
  • Automatic pipelines generation (see this blog post)

A Typical Example: Sales Forecasting

Below is a typical example of sales forecasting based on Walmart competition on Kaggle. In order to frame it as a machine learning problem, we formulate the historical sales data and additional attributes as shown below:
Raw data:
Table for store sales
Data formulated for machine learning:
Table for departement_strore
Once you have your data prepared in tabular format (see raw data above), Driverless AI can formulate it for machine learning and sort out the rest. If this is your very first session, the Driverless AI assistant (new feature in version 1.2) will guide you through the journey.
Alert for driverless ai
Similar to previous Driverless AI examples, users need to select the dataset for training/test and define the target. For time-series, users need to define the time column (by choosing AUTO or selecting the date column manually). If weighted scoring is required (like the Walmart Kaggle competition), users can select the column with specific weights for different samples.
Details about H2o ai experiment
If users prefer to use automatic handling of time groups, they can leave the setting for time groups columns as AUTO.
simple settings
Expert users can define specific time groups and change other settings as shown below.
Data about simple settings
Once the experiment is finished, users can make new predictions and download the scoring pipeline just like any other Driverless AI experiments.
Walmart demo data
Seeing is believing. Try Driverless AI yourself today. Sign up here for a free 21-day trial license.
Until next time,
Bonus fact: The masterminds behind our time-series recipes are Marios Michailidis and Mathias Müller so internally we call this feature AutoM&M.

About the Author

Jo-Fai Chow

Jo-fai (or Joe) has multiple roles (data scientist / evangelist / community manager) at H2O.ai. Since joining the company in 2016, Joe has delivered H2O talks/workshops in 40+ cities around Europe, US, and Asia. Nowadays, he is best known as the H2O #360Selfie guy. He is also the co-organiser of H2O's EMEA meetup groups including London Artificial Intelligence & Deep Learning - one of the biggest data science communities in the world with more than 11,000 members.

Leave a Reply

Three Keys to Ethical Artificial Intelligence in Your Organization

There’s certainly been no shortage of examples of AI gone bad over the past few

September 23, 2022 - by H2O.ai Team
Using GraphQL, HTTPX, and asyncio in H2O Wave

Today, I would like to cover the most basic use case for H2O Wave, which is

September 21, 2022 - by Martin Turoci
머신러닝 자동화 솔루션 H2O Driveless AI를 이용한 뇌에서의 성차 예측

Predicting Gender Differences in the Brain Using Machine Learning Automation Solution H2O Driverless AI 아동기 뇌인지

August 29, 2022 - by H2O.ai Team
Make with H2O.ai Recap: Validation Scheme Best Practices

Data Scientist and Kaggle Grandmaster, Dmitry Gordeev, presented at the Make with H2O.ai session on

August 23, 2022 - by Blair Averett
Integrating VSCode editor into H2O Wave

Let’s have a look at how to provide our users with a truly amazing experience

August 18, 2022 - by Martin Turoci
5 Tips for Improving Your Wave Apps

Let’s quickly uncover a few simple tips that are quick to implement and have a

August 9, 2022 - by Martin Turoci

Start Your Free Trial