H20 GenAlW (SRLD NEWYORK

Text-to-SQL:

Fine Tuning for Enhanced Query Generation Farbod Tavakkoli – AT&T CDO – Data Scientist

Introduction Why Fine Tuning Overview Methodology Fine Tuning **Data Curation** Data Profiling Synthetic Data Generation Model Card H2O LLM Studio Results

Introduction

Why Fine Tuning

Scaling laws: as compute spent in training goes 🔼 model performance keeps improving

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

A green sign that says "Very Deep Learning" and is at the edge of the Grand Canyon. Puffy white clouds are in the sky.

BIRD-SQL Benchmark

Leaderboard - Execution Accuracy (EX)

	Model	Code	Size	Oracle Knowledge
	Human Performance Data Engineers + DB Students			\checkmark
1 Nov 11, 2024	DSAIR + GPT-40 AT&T - CDO		UNK	\checkmark
2 Nov 3, 2024	CHASE-SQL + Gemini Google Cloud [Pourreza et al. '24]		UNK	\checkmark
6 3 Oct 27, 2024	ExSL + granite-34b-code IBM Research AI		34B	\checkmark
4 (Aug 21, 2024)	OpenSearch-SQL, v2 + GPT- 4o Alibaba Cloud		UNK	\checkmark
5 Jul 22, 2024	Distillery + GPT-40 Distyl Al Research [Maamari et al. '24]		UNK	\checkmark
6 (May 21, 2024)	CHESS _{IR +CG +UT} Stanford [Talaei et al.'24]	[link]	UNK	\checkmark
7 (Aug 28, 2024)	Insights AI Uber Freight		UNK	\checkmark
8 Aug 30, 2024	PURPLE + RED + GPT-40 Fudan University + Transwarp Technology		UNK	\checkmark
9 Jul 14, 2024	RECAP + Gemini Google Cloud		UNK	\checkmark
10 Jul 2, 2024	ByteBrain ByteDance Infra Lab		33B	\checkmark

Dev (%)	Test (%)
	92.96
74.32	74.12
73.14	74.06
72.43	73.17
69.30	72.28
67.21	71.83
68.31	71.10
72.16	70.26
68.12	70.21
66.95	69.03
65.45	68.87

H20 GenAIW SRLD H20.ai

Overview

Number of prospect customers that are fiber eligible, limit to residential, exclude employees, exclude vacant addresses

23,410

Similar Few Shots

User input

Query Generation

Result

Similar metadata

Table Name	Column Name	Column Type	
acct_denorm	acct_id	numeric	
acct_denorm	wrls_pstpd	text	
customer_addr_ro	att_fiber_cvrg	text	
customer_addr_ro	prspct_cvrg	text	
customer_wirls	ipad_ind	text	
customer_wirls	dep_am	numeric	
acct_deno	spnh_bl_ind	text	Identifies an ac
customer_wirls	equip_nm	text	
customer_ro	dvc_wearable	text	
customer_wirls	suspends_cnt	numeric	Numbe

Column Description

Unique Identifier of an account

Indicates postpaid customers

Indicates if the location has fiber coverage

Indicates if the location is a prospect

Identifies a line/subscriber that has iPad

Identifies the initial deposit amount paid towards a device

ccount whose owner has asked to have their bill sent to them in Spanish

Identifies current equipment/device model name

Identifies if the account has an wearable device

er of times a subscriber has been suspended in past 12 months

Similar few shots

Number of prospect customers that are fiber eligible, limit to fiber new green in past 30 days, exclude employees

SELECT COUNT (DISTINCT r.addr_id) FROM customer_address_ro r JOIN customer_address a ON a. addr_id = r. addr_id WHERE r.prspct_cvrg = 'Y' AND r.fiber_cvrg = 'Y' AND a.fiber_green_dt >= Current_date - 30 AND r.att_empl = 'N';

Query Generation

Generate a SQL query to answer {user_question}

Instructions {instructions}

SQL examples Provided are some examples with question and corresponding SQL codes {few_shots}

Database Schema The query will run on a database with the following schema: {metadata}

Answer Given the database schema, here is the SQL query that answers {user_question}

Fine Tuning

Ambiguous or Abbreviated Names:

Number of con that are byod Number of prospect aloc that aia eligible Number of iru or cru postpaid subscribers Number of active dsl customers who are upgrade eligible Number of customers who have upgraded their hsia

Consistency:

SELECT count(distinct srv_accs_id) FROM customer_wirls WHERE upgrd_eligible = 'NoTTCE' select count(distinct srv_accs_id) FROM customer_wirls Where upgrd_eligible = 'OffCo' Select count(distinct srv_accs_id) FROM customer_wirls where upgrd_eligible = 'PreCRO'

Before	After
select	SELECT
count	COUNT
having	HAVING
where	WHERE
and	AND
or	OR
join	JOIN
limit	LIMIT
from	FROM
on	ON
in	IN
between	BETWEEN
limit	LIMIT
as	AS
distinct	DISTINCT
in	IN

Unnecessary Parts:

SELECT COUNT(DISTINCT cust_loc_id) AS eligible_customers FROM ACCT_DENORM SELECT COUNT(DISTINCT acct_id) FROM CUSTOMER_SUBSRPTN_WIRLS LIMIT 100

Table vs View Name:

SELECT COUNT(DISTINCT acct_id) FROM VIEWS_ACCT_DENORM SELECT COUNT(DISTINCT account_id) FROM ACOUNT_DENORM

Fine Tuning Data Preparation **Data Profiling**

actvtn_clstr VARCHAR(50), -- Activation Cluster name. The column values are a state name followed by Cluster like California Cluster.

equip_mdl_nm VARCHAR(50), -- device model name associated with the line. The column values are LG for LG devices, SM-% or %Galaxy% or Samsung for Samsung devices, and iPhone XX% or iPhone X% for iPhone devices

Fine Tuning Data Preparation Synthetic Data Generation

Introduction

You are given question, metadata, and query from MGO domain which is about telecommunication.

Goal Your task is to generate synthetic data for fine tuning a large language model (LLM)

Instruction {instruction}

Example for input and output {examples)

Llama3-SQLcoder-8b

CREATE TABLE sales (sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale product_id INTEGER, -- ID of product sold customer_id INTEGER, -- ID of customer who made purchase salesperson_id INTEGER, -- ID of salesperson who made the sale sale_date DATE, -- Date the sale occurred quantity INTEGER -- Quantity of product sold);

CREATE TABLE product_suppliers (supplier_id INTEGER PRIMARY KEY, -- Unique ID for each supplier product_id INTEGER, -- Product ID supplied supply_price DECIMAL(10,2) -- Unit price charged by supplier);

-- sales.product_id can be joined with products.product_id
-- sales.customer_id can be joined with customers.customer_id
-- sales.salesperson_id can be joined with salespeople.salesperson_id
-- product_suppliers.product_id can be joined with products.product_id

H2O LLM Studio

Dashboard

Grid Search

Learning Rate (grid search)

0.0001

Differential Learning Rate Layers

Select optional layers...

Attention Implementation

Auto

Batch Size is a grid search hyperparameter.

Batch Size (grid search)

2

Select All Deselect All

Epochs is a grid search hyperparameter.

Epochs (grid search)

1

Select All Deselect All

Schedule

Cosine

Min Learning Rate Ratio

Warmup Epochs is a grid search hyperparameter.

Warmup Epochs (grid search)

0

Weight Decay is a grid search hyperparameter.

Weight Decay (grid search)

0

\sim
\sim
\sim
\sim
_
\sim
J
\sim
J
- 0
\sim

Logs

2024-11-11 13:01:53,639 - INFO: train loss: 0.45: 5% 5 8/160 [00:21<06:54, 2.73s/it] 2024-11-11 13:02:05,668 - INFO: train loss: 0.45: 5% 5 8/160 [00:33<06:54, 2.73s/it] 2024-11-11 13:02:14,431 - INFO: train loss: 0.32: 10% # 16/160 [00:42<06:21, 2.65s/it] 2024-11-11 13:02:25,669 - INFO: train loss: 0.32: 10% # 16/160 [00:53<06:21, 2.65s/it] 2024-11-11 13:02:36,315 - INFO: train loss: 0.13: 15% #5 24/160 [01:04<06:05, 2.69s/it] 2024-11-11 13:02:51,817 - INFO: train loss: 0.13: 15% #5 24/160 [01:20<06:05, 2.69s/it] 2024-11-11 13:02:57,252 - INFO: train loss: 0.17: 20% ## 32/160 [01:25<05:40, 2.66s/it] 2024-11-11 13:03:11,818 - INFO: train loss: 0.17: 20% ## 32/160 [01:40<05:40, 2.66s/it] 2024-11-11 13:03:18,438 - INFO: train loss: 0.11: 25% ##5 40/160 [01:46<05:18, 2.66s/it] 2024-11-11 13:03:31,819 - INFO: train loss: 0.11: 25% ##5 40/160 [02:00<05:18, 2.66s/it] 2024-11-11 13:03:39,391 - INFO: train loss: 0.15: 30% ### 48/160 [02:07<04:56, 2.64s/it] 2024-11-11 13:03:51,820 - INFO: train loss: 0.15: 30% ### 48/160 [02:20<04:56, 2.64s/it] 2024-11-11 13:04:00,334 - INFO: train loss: 0.06: 35% ###5 | 56/160 [02:28<04:34, 2.64s/it] 2024-11-11 13:04:11,820 - INFO: train loss: 0.06: 35% ###5 56/160 [02:40<04:34, 2.64s/it] 64/160 [02:49<04:12, 2.63s/it] 2024-11-11 13:04:21,330 - INFO: train loss: 0.12: 40% #### 2024-11-11 13:04:31,821 - INFO: train loss: 0.12: 40% ##### 64/160 [03:00<04:12, 2.63s/it] 2024-11-11 13:04:43,036 - INFO: train loss: 0.12: 45% ####5 72/160 [03:11<03:53, 2.66s/it] 2024-11-11 13:04:55,672 - INFO: train loss: 0.12: 45% ####5 72/160 [03:23<03:53, 2.66s/it] 2024-11-11 13:05:03,866 - INFO: train loss: 0.09: 50% ###### 80/160 [03:32<03:31, 2.64s/it] 2024-11-11 13:05:15,673 - INFO: train loss: 0.09: 50% ###### 80/160 [03:43<03:31, 2.64s/it] 2024-11-11 13:05:24,882 - INFO: train loss: 0.12: 55% #####5 88/160 [03:53<03:09, 2.64s/it] 88/160 [04:03<03:09, 2.64s/it] 2024-11-11 13:05:35,674 - INFO: train loss: 0.12: 55% #####5 2024-11-11 13:05:46,269 - INFO: train loss: 0.04: 60% ####### | 96/160 [04:14<02:49, 2.65s/it] 2024-11-11 13:06:01,823 - INFO: train loss: 0.04: 60% ####### 96/160 [04:30<02:49, 2.65s/it] 2024-11-11 13:06:07,915 - INFO: train loss: 0.07: 65% #######5 104/160 [04:36<02:29, 2.67s/it] 2024-11-11 13:06:21,824 - INFO: train loss: 0.07: 65% ######5 104/160 [04:50<02:29, 2.67s/it] 112/160 [04:57<02:08, 2.68s/it] 2024-11-11 13:06:29,597 - INFO: train loss: 0.14: 70% ######### 2024-11-11 13:06:41,825 - INFO: train loss: 0.14: 70% ######## 112/160 [05:10<02:08, 2.68s/it] 2024-11-11 13:06:51,620 - INFO: train loss: 0.06: 75% ########5 | 120/160 [05:19<01:48, 2.70s/it]

Charts

Results

Results

GPT-40 costs around \$0.02 per call while Llama3 is effectively free

* * •

