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Abstract

This paper introduces a comprehensive

framework for the evaluation and validation of

generative language models (GLMs), with a

focus on Retrieval-Augmented Generation (RAG)

systems deployed in high-stakes domains such

as banking. GLM evaluation is challenging due

to open-ended outputs and subjective quality

assessments. Leveraging the structured nature

of RAG systems, where generated responses are

grounded in a predefined document collection, we

propose the Human-Calibrated Automated Testing
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(HCAT) framework. HCAT integrates a) automated

test generation using stratified sampling, b)

embedding-based metrics for explainable assessment

of functionality, risk and safety attributes, and

c) a two-stage calibration approach that aligns

machine-generated evaluations with human

judgments through probability calibration and

conformal prediction.

In addition, the framework includes robustness

testing to evaluate model performance against

adversarial, out-of-distribution, and varied

input conditions, as well as targeted weakness

identification using marginal and bivariate analysis

to pinpoint specific areas for improvement.

This human-calibrated, multi-layered evaluation

framework offers a scalable, transparent, and

interpretable approach to GLM assessment,

providing a practical and reliable solution for

deploying GLMs in applications where accuracy,

transparency, and regulatory compliance are

paramount.

Keywords: Generative Language Models,

Retrieval-Augmented Generation, Model Validation,

Human-Calibrated Testing, Automated Test

Generation, Embedding-Based Metrics, Conformal

Prediction, Robustness Testing, Weakness

Identification.
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1 Introduction

Generative language models (GLMs) have revolutionized

natural language processing (NLP), powering applications

such as conversational agents, content generation, and

language translation. The latest large language models

(LLMs) (Brown et al., 2020) can generate coherent and

contextually relevant text that often closely resembles

human writing. Retrieval-augmented generation (RAG)

systems advance this capability by embedding retrieval

mechanisms within generative models, enabling access to a

structured knowledge base of documents to guide responses

(Krishna et al., 2023; Lewis et al., 2020). In RAG

systems, this defined collection of documents serves as a

grounding reference, allowing the generation process to

produce outputs anchored in available information. This

approach helps ensure more predictable and manageable

system behavior by constraining outputs within a predefined

document scope.

Evaluating GLMs is challenging due to the vast range

of potential inputs and outputs, making exhaustive manual

assessment impractical (Srivastava et al., 2023; Liang et al.,

2023). However, the bounded nature of RAG systems offers

opportunities for more focused and feasible testing. With a

defined document scope, RAG systems enable systematic

exploration of inputs and provide a clearer framework

for output evaluation. Additionally, the reliance on
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external documents allows the generation of relevant queries

and anticipated responses, facilitating a more automated

approach to testing and validation.

1.1 Challenges in Evaluating Generative

Models in Banking

Model testing and validation is a rigorous process aimed at

identifying and quantifying weaknesses in models to enable

targeted improvements or to apply risk mitigation. This

process ensures that models are reliable, accurate, and

effective for their intended uses. Model validation helps

prevent potential failures and maintains confidence in the

model performance for critical business process. Banking

industry in the US probably has the most matured model

validation practice compared to other industries where every

model prior going to production must be evaluated in terms

of conceptual soundness and outcome analysis (Sudjianto

and Zhang, 2024).

Model testing and validation are essential to identify and

quantify model weaknesses, enabling targeted improvements

or risk mitigation measures. This process ensures that

models remain reliable, accurate, and effective for their

intended applications. In the banking sector, where

model performance is critical to business operations,

model validation practices are highly advanced. The U.S.

banking industry, in particular, has established some of the
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most rigorous model validation standards, requiring every

model to undergo comprehensive evaluation—including

assessments of conceptual soundness and outcome

analysis—before deployment (Sudjianto and Zhang,

2024). However, generative language models present unique

challenges for validation compared to traditional predictive

models, whose outputs are typically constrained to specific

labels or numerical values. GLMs, in contrast, produce

open-ended text, making it difficult to define a singular

”correct” output and to consistently assess quality.

RAG systems combine retrieval and generation

capabilities to produce nuanced, contextually rich responses.

This dual functionality requires evaluation across several

dimensions, including the relevance of retrieved information,

the groundedness of generated content in those sources, the

completeness of responses to user queries, and the overall

relevance of the provided answers. As a result, evaluating

RAG systems is inherently more complex than assessing

traditional predictive models with well-defined outputs.

An emerging approach to evaluating GLMs involves

using LLMs as judges to assess responses from other

models based on metrics such as truthfulness, relevance,

and consistency. For example, the TruthfulQA benchmark

developed by Lin et al. (2022) employs a fine-tuned LLM

to evaluate responses for factual accuracy. While efficient

and scalable, this ”LLM-as-judge” method introduces

limitations, including circularity and shared biases—where

5



the evaluating LLM may have similar misconceptions or

predispositions as the models it assesses. Additionally,

in regulated industries like banking, relying on LLMs for

evaluation may face resistance due to the opacity and

lack of transparency in how outcomes are determined,

making it challenging to meet explainability requirements.

Further, using LLMs as evaluators may raise concerns

about conceptual soundness, as evaluation by a complex,

often unexplainable model might not align with rigorous

validation standards expected in banking. The HELM

(Holistic Evaluation of Language Models) framework

proposed by Liang et al. (2023) highlights the need for

multidimensional assessments covering robustness, fairness,

and toxicity, which are difficult to achieve reliably through

opaque models. These issues underscore the broader

challenge of adopting LLM-based evaluation methods in

regulated sectors where transparency, conceptual soundness,

and accountability are paramount for regulatory acceptance.

In summary, the evaluation of RAG systems and

generative language models (GLMs) in banking presents

distinct challenges. First, comprehensive testing is essential

to ensure model reliability, yet the open-ended nature of

GLMs makes defining exhaustive test cases difficult. Second,

scaling this comprehensive testing is a formidable task,

as test cases must be generated across a wide array of

scenarios to capture the complexity of potential inputs and

outputs. Third, establishing reliable evaluation approaches
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and metrics that can consistently capture dimensions like

truthfulness, relevance, and groundedness is challenging,

especially given the subjective nature of language quality.

Finally, applying rigorous testing and validation procedures

akin to those used in traditional predictive models is difficult

for GLMs, as these models require assessment of open-text

outputs rather than discrete, predictable values. Together,

these challenges underscore the need for innovative testing

methodologies and robust, scalable validation frameworks

that can address the unique complexities of generative

models in high-stakes industries like banking.

1.2 A Structured Approach

To address the challenges, we propose a structured approach

covering essential steps for generative language model

validation in banking:

1. Define Model Purpose and Scope: Begin by clearly

stating the model’s intended use, whether for

customer support, document summarization, or other

applications. Establish boundaries around the

expected tasks and the limitations of the model to

guide validation criteria.

2. Identify Potential Risks and Failures: Outline the key

risks, such as the model generating incorrect, biased,

or misleading responses, which could have regulatory

or reputational impacts. Focus on identifying failure
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modes specific to the financial and non-financial

contexts, including the generation of non-compliant or

sensitive information.

3. Develop Diverse Test Cases and Stress Tests: Create

test cases that cover a broad spectrum of query types,

ensuring that the model can handle varied topics,

question formats, and levels of complexity. Conduct

stress tests, such as ambiguous, adversarial, and

out-of-distribution inputs, to reveal model weaknesses

and test its robustness under challenging scenarios.

4. Use Transparent and Explainable Metrics: Prioritize

metrics that offer transparency, such as those based

on semantic similarity and natural language inference,

over black-box methods. Embedding-based metrics

like BERTScore or entailment probabilities can

provide more interpretable insights into whether the

model responses are relevant, grounded, and complete.

5. Automate Testing for Comprehensive Coverage:

Automate testing when possible to ensure the

validation process is scalable and can cover a wide

range of queries and scenarios without requiring

extensive manual effort.

6. Calibrate with Human Evaluations: Periodically

sample model outputs for human review, comparing

automated metrics with human judgments to ensure
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the automated processes align well with human

expectations. Use this calibration to adjust metric

thresholds or test parameters as needed.

7. Identify Weaknesses for Model Improvement and Risk

Mitigation: Based on the validation results, highlight

areas where the model struggles, such as specific query

types or scenarios. Use this analysis to guide ongoing

model improvement, risk mitigation or guardrails,

and the design of monitoring systems to maintain

performance post-deployment.

This structured approach provides a comprehensive

framework for validating GLMs within banking, integrating

rigorous steps to ensure reliability, accuracy, and compliance

with regulatory standards. Transparent, explainable metrics

are prioritized to offer interpretable insights into GLM

outputs, and automation is employed to enable thorough

coverage across various scenarios. Calibration with human

evaluations further aligns the validation process with

real-world expectations, and continuous monitoring of GLM

weaknesses ensures targeted improvements and mitigates

risks over time.

1.3 Human-Calibrated Automated Testing

(HCAT) Framework

Building on the structured approach outlined above, we now

introduce the human-calibrated automated testing (HCAT)
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framework, a technical and systematic solution tailored for

the rigorous demands of GLM testing and validation. This

framework combines automated test generation, explainable

evaluation metrics, and human-calibrated benchmarks to

tackle the complexities of assessing GLMs, particularly in

the context of RAG systems.

The HCAT framework is designed to ensure that

the validation process is both scalable and interpretable,

meeting high standards of transparency, accuracy, and

compliance. The following components define the technical

structure of the HCAT framework:

1. Automatic Test Generation: Using topic modeling and

stratified sampling, HCAT produces a diverse set

of queries covering the full scope of the document

collection, enabling comprehensive model evaluation

across varied input scenarios.

2. Explainable Evaluation Metrics: HCAT employs

embedding-based metrics to provide a holistic

assessment of model performance, spanning two

critical dimensions:

• Functionality Metrics: Embedding-based metrics

assess core RAG capabilities, including relevance,

groundedness, completeness, and answer

relevancy, offering transparent and interpretable

insights into semantic alignment between queries,

contexts and answers.
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• Risk and Safety Metrics: Specialized

embedding-based metrics assess risk and safety,

such as toxicity, bias, and privacy protection,

crucial for ensuring compliance and reliability in

sensitive applications.

3. Calibration with Human Judgments: To ensure that the

automated metrics align with human perceptions, we

calibrate them using samples of human labeling. This

process involves:

• Sampling Human Evaluations: Gathering human

judgments on subsets of the generated outputs.

• Regression Techniques: Applying probability

calibration models to align machine evaluation

scores with human judgments.

• Conformal Prediction: Quantifying uncertainty in

machine evaluations by providing prediction sets

with confidence level, enabling a more nuanced

understanding of evaluation reliability.

In the following sections, we provide a detailed

breakdown of each HCAT component. Section 2 describes

the automatic test generation process, including the use

of topic modeling and stratified sampling to create a

comprehensive set of test queries. Section 3 delves

into functionality evaluation metrics, covering relevance,

groundedness, completeness, and answer relevancy, and
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explains the use of embedding-based metrics to assess each

dimension. Section 4 focuses on risk and safety evaluation,

detailing metrics for toxicity, bias, and privacy protection to

ensure compliance and reliability. Section 5 addresses the

calibration process with human judgments, explaining how

human evaluations refine automated metrics for real-world

alignment. Section 6 presents robustness testing and

weakness identification techniques to pinpoint areas for

improvement, followed by Section 7 with a discussion of

implications and conclusions.

2 Automatic Test Generation

To evaluate GLMs comprehensively, particularly RAG

systems, it is crucial to have a diverse and representative

set of queries that spans the entire scope of the document

collection. To achieve this, we propose an automatic query

generation method through stratified sampling. The topic

modeling technique by Grootendorst (2022) serves as a

prerequisite for defining strata, allowing us to categorize

documents into coherent topics or themes. By sampling

within each topic stratum, we ensure that the generated

queries cover all relevant topics and variations within the

knowledge base.

Our five-step process for automatic query generation

includes: (1) Embedding, (2) Dimensionality Reduction, (3)

Clustering to Define Strata, (4) Stratified Sampling, and (5)
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LLM-driven Query Generation.

Step 1: Embedding

The first step involves generating embeddings for all

documents in the collection. Embeddings are numerical

vector representations that capture the semantic content

of text; see Devlin et al. (2019) for contextual embeddings

using BERT (Bidirectional Encoder Representations from

Transformers). In the proposed HCAT framework, we utilize

the following advanced embedding models:

• Embeddings Trained through Contrastive Learning:

Models like SimCSE (Gao et al., 2021) and

Sentence-BERT (Reimers and Gurevych, 2019) use

contrastive learning to produce embeddings that

capture fine-grained semantic similarities. These

embeddings are effective for assessing the relevance

and coherence between texts. See more discussion in

Section 3.

• Specialized Embeddings from Natural Language

Inference (NLI) Models: NLI models are trained to

determine entailment, contradiction, or neutrality

between pairs of sentences (MacCartney, 2009).

By using embeddings from NLI models, we can

evaluate the logical consistency and groundedness

of the generated responses in relation to the source

documents. Meanwhile, specialized NLI models can
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be applied for detecting hallucination (Kryscinski

et al., 2020; Laban et al., 2022) and detecting toxicity

(Jigsaw and Google, 2017; Hanu and Unitary team,

2020). See more discussions in Sections 3 and 4.

By converting documents into embeddings, we create a

foundation for analyzing semantic similarities or other

discriminative tasks in a high-dimensional space.

Step 2: Dimensionality Reduction

The generated embeddings are high-dimensional vectors for

which clustering approach may become less effective. To

address this, we apply dimensionality reduction techniques

to project the embeddings into a lower-dimensional space

while preserving their essential semantic properties. Among

others, we consider

• Principal Component Analysis (PCA): reduces

dimensionality by linearly projecting data onto

principal components that capture the most variance.

• Uniform Manifold Approximation and Projection

(UMAP): preserves both local and global data

structure, providing an efficient and scalable method

for dimensionality reduction (McInnes et al., 2018).

The choice of dimensionality reduction technique depends

on factors such as dataset size, computational resources,

and the desired balance between preserving local and global
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structures. It enables efficient clustering and visualization,

facilitating the identification of natural groupings within the

data.

Figure 1: Topic modeling through dimensionality reduction,

clustering, and topic extraction.

Step 3: Clustering to Define Strata

With the reduced-dimensional embeddings, we perform

clustering to group semantically similar documents. A

clustering algorithm may identify natural groupings within

the data, effectively organizing the documents into topics or

themes. Among others, we consider

• K-Means Clustering: Partitions the data into

a predefined number of clusters by minimizing

within-cluster variance.

• DBSCAN (Density-Based Spatial Clustering of
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Applications with Noise): Identifies clusters based on

data point density, allowing for clusters of arbitrary

shape and handling noise effectively (Schubert et al.,

2017).

The resulting clusters serve as strata for stratified sampling.

Each cluster represents a distinct topic or sub-topic within

the document collection, ensuring that all areas of the

knowledge base are represented in the testing process.

Figure 1 shows an example of topic clustering, where each

point in the plot represents a document chunk. This

stratification is crucial for achieving comprehensive coverage

and preventing biases toward dominant topics.

Step 4: Stratified Sampling

To achieve the comprehensive coverage effectively, we

perform sampling within each cluster. Sampling can be

proportional to the size of the cluster or weighted based on

criteria such as the importance of the topic or the frequency

of occurrence.

The stratified sampling approach ensures that queries are

generated from all topics, preventing over-representation of

prevalent themes and under-representation of niche areas. It

allows for a balanced evaluation of the RAG system across

the entire spectrum of the knowledge base, minimizing the

risk of overlooking any significant areas.

Step 5: LLM-driven Query Generation

16



Finally, we utilize an LLM to generate queries based on the

sampled documents. For each selected document, we prompt

the LLM to create questions that are relevant to the content.

The process involves:

1. Extracting Key Information: Identifying important

facts, concepts, or statements within the document

suitable for question formulation.

2. Prompting the LLM: Providing the LLM with the

extracted information and instructions to generate

queries of various types and complexities.

3. Ensuring Diversity and Complexity: Instructing the

LLM to produce a variety of question formats

and difficulty levels, including yes/no questions,

multiple-choice questions, and open-ended queries.

4. Query Selection: Evaluate and select queries based on

relevancy metrics.

When prompting the LLM, we need to generate queries

with various query types and complexities in order to

thoroughly test the RAG system (Yang et al., 2018; Ribeiro

et al., 2020; Li et al., 2024). Among our considerations are

the following scenarios:

1. Simple Factual Queries that test basic retrieval

capabilities.
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2. Multi-hop or Compound Queries that assess the ability

to synthesize information from multiple sources.

3. Inference and Reasoning Queries that evaluate logical

and reasoning skills.

4. Yes/No and Multiple-Choice Questions that testing

precision and understanding.

To sum up, the automatic test generation component

of the HCAT framework ensures that GLMs are tested

comprehensively and representatively. The five-step process

covers the entire scope of the document collection in a RAG

system. By automating the query generation process using

an LLM, we efficiently create a comprehensive set of test

queries that are diverse in content and form. Through

the use of topic modeling and clustering, it allows us

to thoroughly evaluate the capabilities of a RAG system

in retrieving relevant information and generating accurate

responses across all topics.

3 Functionality Metrics

Evaluating GLMs has traditionally involved metrics like

BLEU, ROUGE, and perplexity, which quantify aspects of

language generation such as n-gram overlap and fluency.

However, these metrics often fail to capture semantic

relevance and do not align well with human judgments,
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especially for open-ended generation tasks. Recent research

has explored embedding-based metrics that assess semantic

similarity, offering a closer approximation to human

judgments (Zhang et al., 2020).

We advocate the use of embedding-based evaluation

metrics. As discussed in Section 2, the embeddings

of documents can be trained by contrastive learning

or extracted from specialized NLI models. Using

these embeddings, we can calculate semantic similarities

and entailment probabilities, providing transparent and

statistically grounded evaluation metrics. This approach

avoids reliance on black-box tools or unverified methods,

allowing for in-depth analysis and understanding of the

evaluation results.

To effectively measure the performance of RAG systems,

it is essential to adopt evaluation approaches that are both

transparent and explainable, particularly when assessing

retrieval relevance, groundedness, completeness, and answer

relevancy; see Figure 2 for an illustration. The transparency

is crucial not only for applications in regulated industries,

where compliance and accountability are paramount, but

also for fostering trustworthiness among users. Moreover,

explainable metrics can be effectively calibrated with human

evaluations, ensuring that automated assessments align

with human judgments and expectations. By prioritizing

explainable and interpretable evaluation methods, we can

enhance the reliability and integrity of RAG systems,
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ensuring they meet high standards of performance and user

trust.

Figure 2: RAG System Components and Functionality

Evaluation

3.1 Context Relevancy

Context relevancy measures how well the retrieved

documents address the input query for a RAG system. To

quantitatively measure the relevancy between a query and

a context in RAG systems, we develop a sentence-level

semantic similarity approach that extends the token-level

approach from Zhang et al. (2020). This method breaks

down both the query and the context into individual

sentences and computes similarity scores for each pair,

providing a fine-grained assessment of context relevancy.
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Let us denote the query as Q = {q1, q2, . . . , qm}
consisting of m sentences, and the retrieved context as

C = {c1, c2, . . . , cn} consisting of n sentences. For each

sentence in either Q or C, its embedding is computed using

a suitable embedding model:

eqi = Embed(qi), for i = 1,2, . . . ,m.

ecj = Embed(cj), for j = 1,2, . . . , n.

where Embed(⋅) represents the embedding function that

maps a sentence to a vector in the d-dimensional embedding

space. Thus, we can compute the similarity between

each pair of query and context sentences using the cosine

similarity,

Sim(qi, cj) = cos(θij) =
eqi ⋅ ecj
∥eqi∥∥ecj∥

,

where eqi ⋅ ecj is the dot product of two embedding vectors,

and ∥eqi∥, ∥ecj∥ are the norms of the embeddings. The cosine

similarity ranges from −1 to 1, where 1 indicates identical

orientation (maximum similarity), 0 indicates orthogonality

(no similarity), and −1 indicates opposite orientation.

Based on the cosine similarity for a pair of sentences,

we may calculate the maximum similarity for each query

sentence qi by

Smax(qi) = max
1≤j≤n

Sim(qi, cj).

This Smax(qi) score represents how well the query sentence qi

is addressed by the most relevant context sentence. Then, to
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measure the overall context relevancy of the whole query, we

may aggregate the maximum similarity scores for all query

sentences, i.e.,

Sc-relevancy =
1

m

m

∑
i=1

Smax(qi).

If certain query sentences are more important, we may use

the weighted average,

Sc-relevancy =
m

∑
i=1

wi ⋅ Smax(qi),

where wi is the weight assigned to the query sentence qi

subject to wi ≥ 0 and ∑m
i=1wi = 1. Furthermore, when it is

critical that all aspects of the query should be addressed,

we may use the minimax score that focuses on the least

addressed query sentence,

Sc-relevancy = min
1≤i≤m

Smax(qi).

A high Sc-relevancy score indicates that the context C is

highly relevant to the query Q, while a low Sc-relevancy score

indicates low relevancy.

3.2 Groundedness

Groundedness ensures that the generated content is based on

the retrieved documents, avoiding unsupported statements

or hallucinations. To measure the groundedness between

the context and the generated answer in a RAG system,

we employ two approaches: sentence similarity and natural

language inference.
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3.2.1 Sentence Similarity

Denote the answer as A = {a1, a2, . . . , ak} consisting of k

sentences. Similar to the approach of computing the context

relevancy, let us break down both the context and the answer

into individual sentences, then compute the similarity scores

for each pair of sentence embeddings. For each sentence ai

in the answer, calculate the maximum similarity by

Smax(ai) = max
1≤j≤n

Sim(ai, cj),

which measures how well the answer sentence ai is grounded

in the context C = {c1, c2, . . . , cn}. To obtain an overall

groundedness score for the entire answer, we may aggregate

the maximum similarity scores for all answer sentences:

Sgroundedness =
1

k

k

∑
i=1

Smax(ai).

A high Sgroundedness score indicates that on average the

sentences in the answer are well-supported by the context,

suggesting that the answer is grounded and less likely to

contain hallucinations.

Conversely, a low Sgroundedness score suggests that some

sentences in the answer may lack sufficient support from

the context. The sentence with the lowest similarity to any

context sentence, identified as

i∗ = arg min
1≤i≤k

Smax(ai),
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is considered the least grounded and may indicate a potential

hallucination. Other sentences with low Smax(ai) values

could also signal possible hallucinations.

3.2.2 Natural Language Inference (NLI)

NLI models are specifically designed to determine the

inferential relationship between two pieces of text, a

premise and a hypothesis, by classifying the relationship as

“entailment”, “neutral”, or “contradiction” (MacCartney,

2009). In the context of RAG systems, we treat the context

as the premise and the generated answer as the hypothesis.

NLI aims to determine whether a hypothesis can logically

be inferred from a premise. For the purpose of measuring

groundedness (the opposite of hallucination), NLI provides

a mechanism to assess whether the generated answer is

logically supported by the context. If the answer is entailed

by the context, it is considered grounded; if it contradicts

the context or is unrelated, it may indicate a hallucination.

While NLI models provide class probabilities through

multi-class classification, we can obtain a more nuanced

groundedness measure by analyzing the embeddings

produced by the model and measuring the distance to the

decision boundary. The decision boundary in the embedding

space separates different classes and reflects the model’s

confidence in its predictions. In this method, the distance

to the decision boundary is directly related to the logit

value for the “entailment” class. This approach simplifies
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the calculation and provides an interpretable measure of

groundedness.

Suppose a linear classifier computes a logit score z using

the embedding x of the input (which combines the premise

and hypothesis):

z =w⊺x + b

where w is the weight vector and b is the bias term. The

distance D from the input point x to the decision boundary

(i.e., the hyperplane w⊺x + b = 0) is given by:

D = w⊺x + b
∥w∥ = z

∥w∥

where ∥w∥ is the Euclidean norm (magnitude) of the weight

vector. The distance to the decision boundary can be used

to measure the groundedness in the sense that

• when D > 0, the hypothesis is on the entailment side,

i.e., grounded;

• when D < 0, the hypothesis is on the non-entailment

side, i.e., potential hallucination.

We can map the distance D to a probability groundedness

score between 0 and 1 by applying the logit transformation

σ(D) = 1/(1 + e−D).
In sentence-level groundedness assessment, each sentence

ai in the answer A is combined with the context C, then

input into the NLI model to obtain the embedding xi. This

allows us to compute the sentence-level zi,Di and σ(Di).
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The sentences with low σ(Di) scores may be identified as

potential hallucinations.

3.3 Completeness

Completeness evaluates whether the generated answer covers

all relevant information from the context. In RAG

systems, completeness refers to the degree to which the

generated answer incorporates all relevant information from

the retrieved context. A complete answer should not only be

accurate and relevant but also cover all essential points that

are pertinent to the user’s query. Ensuring completeness

is crucial for providing users with comprehensive and

informative responses.

3.3.1 Sentence Similarity

This approach assesses completeness by evaluating how well

the sentences in the context are reflected in the generated

answer. Similar to context relevancy and groundedness, we

break down the context and answer into sentences, then

calculate embedding-based similarity in the sentence level.

For each sentence ci in the context C = {c1, c2, . . . , cn},
calculate the maximum similarity with any sentence in the

answer A = {a1, a2, . . . , ak}:

Smax(ci) = max
1≤j≤k

Sim(ci, aj).
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This score indicates how well the context sentence ci is

covered in the answer.

Similarly, we can aggregate Smax(ci) scores to obtain the

overall completeness score by either the simple average

Scompleteness =
1

n

n

∑
i=1

Smax(ci),

or the weighted average

Scompleteness =
n

∑
i=1

wi ⋅ Smax(ci),

where wi is the weight assigned to the context sentence ci

subject to wi ≥ 0 and ∑n
i=1wi = 1. A high completeness

score indicates that the answer covers most of the content

from the context, while a low completeness score suggests

that significant portions of the context are not reflected in

the answer.

3.3.2 Distribution Alignment Using Wasserstein

Distance

When assessing the completeness of an answer generated

by LLMs, it is essential to measure how well the answer

captures the entire information distribution of the original

context. The sentence similarity approach focuses on

finding close matches between individual sentences, which

may not fully reflect the answer’s coverage of the overall

context. By applying Wasserstein distance, a measure

from optimal transport theory, we can evaluate the

27



alignment of information distribution between the context

and the summary, offering a complementary perspective on

completeness; see also Tang et al. (2022).

Optimal transport (Chewi et al., 2024) is a mathematical

approach for measuring the cost of transforming one

distribution into another. Wasserstein distance, also known

as Earth Mover’s distance, is an optimal transport metric

that quantifies the minimum cost to align two distributions,

reflecting how closely they match in structure and content.

In the context of evaluating RAG-generated answers, the

context sentences are treated as a distribution of information

that needs to be represented in the answer sentences. In

this case, Wasserstein distance measures how much effort is

required to transform the distribution of context information

C into the distribution of answer information A:

W (C,A) = min
γ∈Γ(p,q)

n

∑
i=1

k

∑
j=1

γijd(ci, aj)

where d(ci, sj) is the distance (e.g., Euclidean or cosine

distance) between the embeddings of context sentence ci

and answer sentence aj , γij is the transport weight that

represents how much of context sentence ci is mapped to

answer sentence aj , and Γ(p, q) is the set of all possible

transport plans.

The goal is to find the transport plan γ that minimizes

the total cost, yielding the optimal Wasserstein distance

between the distributions. For simplicity, assume each

sentence contributes equally to the overall information
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distribution by assigning each sentence a weight of 1/n for

context sentences and 1/k for answer sentences. Then,

calculate the average transport cost, weighted by 1/nk based

on the uniform weights. This involves summing the pairwise

distances and dividing by the total number of pairs,

W (C,A) = 1

nk

n

∑
i=1

k

∑
j=1

d(ci, aj).

This average distance provides a straightforward

approximation of the Wasserstein distance.

To interpret the Wasserstein distance for completeness,

a lower distance indicates that the summary effectively

captures the distribution of information in the context,

suggesting higher completeness. A higher Wasserstein

distance implies gaps in completeness, where the answer may

be missing critical content from the context.

3.3.3 Complementing Sentence Similarity with

Wasserstein Distance

While sentence similarity methods directly compare

individual pairs of sentences, Wasserstein distance provides

a complementary approach by assessing the global alignment

of information across the entire context and answer. The key

advantages of Wasserstein distance are:

1. Global Information Distribution: Wasserstein distance

captures the overall distribution of information in the
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context and answer, making it effective for assessing

completeness by reflecting how well the summary

represents the main ideas and topics from the context.

2. Tolerance to Partial Matches: Unlike sentence

similarity, which requires exact or near-exact

matches, Wasserstein distance allows for approximate

alignment. This means that summaries with

paraphrased or generalized content can still achieve

low Wasserstein distances, provided they retain the

main themes.

3. Contextual Relationships: By aligning entire sentence

distributions, Wasserstein distance indirectly accounts

for the thematic structure of the context and summary,

offering a broader perspective than sentence-level

similarity alone.

4. Evaluating Completeness: A lower Wasserstein distance

indicates that the answer closely captures the

distribution of information from the context, reflecting

higher completeness. Conversely, a higher distance

suggests missing content or inadequate coverage of

essential topics.

Using both sentence similarity and Wasserstein distance

together allows for a more nuanced evaluation of

completeness, capturing both the detailed alignment of

specific sentences and the overall distribution of ideas and
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topics within the answer.

3.4 Answer Relevancy

Answer relevancy ensures that the generated response

directly addresses the user’s query. We calculate maximum

similarity scores between the query and the generated

response to measure alignment with the user’s intent. Again,

we can employ the sentence-level similarity approach similar

to previously discussed metrics. This time we break down

both the query and the answer into individual sentences and

computing similarity scores for each pair. By analyzing these

similarities, we can quantify how well the answer addresses

the user’s query.

For each sentence ai in the answer A = {a1, a2, . . . , ak},
calculate the maximum similarity with any sentence in the

query Q = {q1, q2, . . . , qm}:

Smax(ai) = max
1≤j≤m

Sim(ai, qj),

which measures how well the answer sentence ai is relevant

to the query. Then, to obtain an overall answer relevancy

score for the entire answer, we can aggregate the Smax(ai)
scores for all answer sentences by either the simple average

Sa-relevancy =
1

k

k

∑
i=1

Smax(ai)
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or the weighted average

Sa-relevancy =
k

∑
i=1

wi ⋅ Smax(ai),

where wi is the weight assigned to the answer sentence ai

subject to wi ≥ 0 and ∑k
i=1wi = 1. A high Sa-relevancy score

indicates that on average the answer effectively addresses

the user’s question, while a low Sa-relevancy score indicates

potential divergence or irrelevance.

When it is critical that all parts of the answer are

desired to be relevant to the query, we may focus on the

least relevant answer sentence and compute the minimum of

maximum similarities:

Sa-relevancy = min
1≤i≤k

Smax(ai).

4 Risk and Safety Metrics

In this section, we provide a concise overview of evaluation

metrics for assessing risk and safety aspects of generative

language models. Here we focus on critical dimensions

that ensure the deployed GLMs perform responsibly, and

in alignment with regulatory standards for appropriate

use in high-stakes applications such as banking. Three

essential risk and safety metrics for validating GLMs in these

environments include toxicity assessment, bias evaluation,

and privacy protection.
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Toxicity assessment measures the likelihood that

a model generates harmful, offensive, or inappropriate

content. In banking, where interactions must be professional

and respectful, toxicity in model outputs can severely

damage customer trust, harm the institution’s reputation,

and potentially lead to legal repercussions if sensitive or

controversial topics are mishandled. Toxicity is typically

assessed through NLI models that classify statements as safe

or offensive, allowing for real-time toxicity assessment; see

Hanu and Unitary team (2020) among others.

Bias evaluation focuses on detecting demographic

or sentiment bias within the model responses, ensuring

equitable treatment of diverse user groups. In banking,

where interactions may influence financial decisions or

customer perceptions, bias can lead to discriminatory

responses, harming the reputation of the institution

and potentially leading to regulatory scrutiny. Bias

evaluation involves testing the model with a diverse set

of demographic-related queries, including variations in

race, gender, age, and income level, to determine if

response quality or sentiment varies across different groups.

Sentiment analysis models help identify potential differences

in tone or attitude, while counterfactual evaluation assesses

whether altering demographic-related terms (e.g., swapping

“man” with “woman”) results in consistent responses.

Models are scored on bias based on thresholds that align

with banking standards, allowing institutions to identify and
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mitigate unacceptable biases before deployment. If biases

are identified, they can be addressed by fine-tuning the

model with additional data that represents underrepresented

groups fairly, or by implementing constraints to reduce

unintended biases in generated content.

Privacy protection is essential to ensure the model

does not disclose sensitive information, such as personal

financial details, customer identities, or other proprietary

data. In banking, privacy is paramount due to stringent

regulatory requirements like the GDPR and CCPA, and

privacy violations can result in severe financial and legal

consequences. Privacy protection for GLMs often involves

Named Entity Recognition (NER), which identifies and flags

sensitive entities in the output, such as names, addresses, or

account numbers, allowing the model to suppress or filter

such information before it reaches the user. Additionally,

contextual data filtering is implemented to identify phrases

related to account transactions or other sensitive areas,

reducing the risk of unintentional data leakage. Adversarial

testing is used to simulate scenarios where users might

try to elicit sensitive information, and the model responses

are evaluated to ensure that they avoid privacy violations.

Strict thresholds are set to flag any instance of sensitive

information being revealed, prompting immediate action

to investigate and adjust the model if necessary. Privacy

safeguards are reinforced through model retraining or the

implementation of guardrails, ensuring compliance with
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industry regulations and protecting customer information.

Together, these metrics form a robust framework for

risk and safety validation of GLMs, particularly in banking.

Each metric provides a unique lens for assessing the model

behavior, guiding institutions in minimizing risks associated

with inappropriate content, unfair treatment, and data

privacy. This validation process helps ensure that models

meet the high standards of accuracy, transparency, and

accountability required in financial services, supporting safe

and responsible deployment in real-world applications.

5 Calibration of Machine and

Human Evaluations

To ensure alignment between machine-generated scores and

human judgments, we employ a double-calibration approach.

This process consists of two stages: probability calibration

and conformal prediction, each playing a unique role in

producing reliable machine evaluations. Since conformal

prediction adds an additional layer of calibration, we refer

to this two-stage process as the double-calibration method.

Figure 3 provides a diagram of this two-stage approach, with

further details described below:

• Stage 1: Probability calibration provides an initial

mapping of machine scores to probabilities that align

with human expectations,
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• Stage 2: Conformal prediction quantifies the

uncertainty of these calibrated probabilities, providing

prediction intervals with confidence levels.

Machine-Generated Scores

Human Judgments

Stage 1: Probability Calibration

Stage 2: Conformal Prediction

Figure 3: Calibration Diagram of Machine and Human

Evaluations

This double-calibration strategy allows us to

link machine evaluation metrics (such as relevancy,

groundedness, or completeness) to human evaluations that

may be binary or multi-level. Error analysis (Type I and II

errors) can be applied to assess the alignment of machine

versus human evaluations. By setting calibrated thresholds

on calibration model outputs, we derive prediction

sets that reflect the evaluation confidence, facilitating

both automated decision-making and human-in-the-loop
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processes.

5.1 Stage 1: Probability Calibration

The first stage of probability calibration aims to map

raw machine-generated scores to calibrated probabilities

that align with human judgments. This step translates

machine evaluations into a probability scale, making it easier

to interpret machine-generated scores in terms of human

expectations.

To achieve this, we employ standard probability

calibration methods, which include:

• Logistic Model: For human evaluations with binary

labels, a logistic regression model is used to

map machine scores to probabilities, producing a

sigmoid-shaped probability curve. This approach is

also known as Platt scaling, and it is effective when

machine scores have a roughly linear relationship with

human judgments. For multi-category evaluations, it

could involve probabilities assigned to each category.

• Ordinal Regression: For human evaluations with

rankings, ordinal regression provides a calibrated

probability for each level, reflecting the likelihood of

each judgment category.

• Isotonic Regression or Monotonic XGBoost: These

non-parametric methods provide a flexible,
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piecewise-constant mapping of scores to probabilities,

especially useful when there is a monotonic

relationship between machine scores and human

evaluations.

Using a hold-out calibration dataset with both machine

scores and human labels, we train the chosen calibration

model to learn the mapping from raw scores to probabilities.

Once trained, the model can be applied to any new

machine-generated score, providing a calibrated probability

that represents the likelihood of human agreement.

5.2 Stage 2: Conformal Prediction

Conformal prediction is a flexible statistical framework that

produces prediction intervals or sets for any model, assuming

only data exchangeability (Vovk et al., 2005; Angelopoulos

and Bates, 2023). It enables the creation of confidence sets

that include the true label with a specified confidence level,

making it well-suited to classification tasks with complex

or uncertain mappings between machine evaluation metrics

and human labels. In this paper, we consider only the

split conformal prediction, while leaving the full conformal

prediction to a future paper.

In our context, conformal prediction applies a second

level of calibration to the calibrated probabilities obtained

from Stage 1. To implement this, we use an independent

hold-out calibration sample, distinct from the sample used
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for probability calibration. This separate dataset includes

machine-generated scores and corresponding human labels,

allowing us to quantify the uncertainty around the calibrated

probabilities established in Stage 1.

We discuss the split conformal prediction for the logistic

calibration model f̂(⋅). In the procedure below, S(x, y, f̂)
denotes the non-conformity score, which measures the

deviation between the calibrated probability and the human

evaluation. This notation is distinct from other uses of S in

this paper.

1. Non-Conformity Score Calculation: For each sample in

the independent calibration set with sample size n,

compute the non-conformity score

S(x, y, f̂) = ∣y − f̂(x)∣ = 1 − P (Y = y∣x),

where f̂(x) is the calibrated probability from Stage 1,

and y is the observed human label 1 or 0.

2. Calibrated Quantile Computation: Choose a desired

confidence level, represented by an error rate α (e.g.,

α = 0.1 for 90% confidence). Then compute the

quantile q̂ of the non-conformity scores as:

q̂ = Quantile({S1, S2, . . . , Sn};
⌈(n + 1)(1 − α)⌉

n + 1 ) .

3. Prediction Set Construction: For a new test sample

xtest, create the prediction set T (xtest) by including

all possible values y such that:
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T (xtest) = {y ∶ S(xtest, y, f̂(xtest)) ≤ q̂}
= {y ∶ P (Y = y∣xtest) ≥ 1 − q̂}.

For each new instance xtest, the prediction set is

among the three possible cases depending on the predicted

probability f̂(xtest) and the calibrated quantile q̂.

• Single-Class Set: {0} when f̂(xtest) <min{q̂,1− q̂} , or
{1} when f̂(xtest) >max{q̂,1 − q̂}.

• Both-Class Set: {0, 1} when 1 − q̂ ≤ f̂(xtest) ≤ q̂ and

q̂ ≥ 0.5.

• Empty Set: ∅ when q̂ < f̂(xtest) < 1 − q̂ and q̂ < 0.5.

The single-class prediction set indicates high confidence that

the true label corresponds to this class. For instance,

a prediction set at 90% confidence level suggests a high

likelihood that the true evaluation aligns with this class. On

the other hand, when the prediction set includes both classes

or empty, it reflects uncertainty and suggests that additional

review may be needed. Figure 4 presents an example

of machine-human calibration using logistic regression for

groundedness evaluation with binary labels from human

judgment.
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Figure 4: An illustration of calibration for machine-human

groundedness evaluation, using logistic regression and

conformal prediction.

6 Robustness and Weakness

Analysis

This section provides an overview of two essential

perspectives in the testing and validation of GLMs:

robustness testing and weakness identification. Robustness

testing examines the stability and resilience of the model

under varied input conditions, while weakness identification

aims to pinpoint specific areas where the model may need

improvement. Together, these evaluations offer insights into

the model’s strengths and potential vulnerabilities, guiding

enhancements before deployment in critical applications.
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6.1 Robustness Testing

Robustness testing assesses the ability of a RAG system to

handle diverse and challenging inputs (including potentially

problematic inputs), ensuring that it performs robustly

across a range of real-world scenarios. The testing includes

three main types of robustness checks:

1. Adversarial Inputs: This involves introducing

deliberately misleading or contradictory information

to the model’s input. Adversarial testing can expose

how the model handles conflicting information and

whether it can distinguish relevant content from

distractors. By subjecting the model to adversarial

queries, evaluators can assess its ability to avoid

generating inaccurate or biased responses, which is

particularly important in regulated industries like

banking where factual accuracy is critical.

2. Out-of-Distribution Queries: To examine the model’s

adaptability, robustness testing includes queries on

topics that are not present within the model’s training

data or document collection. Out-of-distribution

queries help reveal the model’s limitations by testing

how it responds to unfamiliar topics. A robust

RAG model should either respond appropriately based

on the closest relevant information or acknowledge

its limitations instead of generating inaccurate

information.
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3. Input Variations: The system is also evaluated on its

ability to handle input variations, including spelling

errors, grammatical mistakes, and colloquial language.

This type of testing is essential for real-world

applications where user inputs may be unstructured

or contain errors. A resilient RAG system should be

able to interpret such variations and generate coherent

responses despite minor input inaccuracies.

By systematically examining the model performance

across these query types, the robustness testing phase

highlights potential weaknesses, guiding targeted

improvements. This ensures that the model remains

reliable and resilient across various practical scenarios and

input complexities, enhancing its robustness for deployment

in critical applications.

6.2 Weakness Identification

Model weakness identification, provides an approach for

pinpointing specific performance issues within a RAG

system. This process allows for a granular understanding of

the model’s areas of under performance, supporting targeted

improvements. The methodology in weakness identification

includes the following techniques:

1. Marginal Analysis: It is a key technique where the

system’s performance is evaluated across individual

dimensions, such as topics or query types. By breaking
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down metrics for each category, marginal analysis

helps identify specific areas where the model does not

perform well. For instance, by analyzing relevance or

groundedness scores for each topic individually, the

evaluation can reveal topics that require further data

augmentation or model fine-tuning. Marginal analysis

is critical for finding isolated weaknesses that might

be masked in aggregate evaluations. Figures 5–7 show

examples of marginal plots of various metrics. Each

point is the evaluation result from each query, low

values are where the weakness are.

2. Bivariate Analysis: This method examines the

interaction between two dimensions, such as topic

and query type, to uncover joint weaknesses. This

approach is beneficial for identifying compound issues

that may not be apparent when looking at a single

dimension alone. For example, a model may perform

adequately on simple questions within a topic but

struggle with more complex, multi-hop questions in the

same area. This joint examination helps in pinpointing

specific combinations that are challenging for the

model and might benefit from additional training or

refinement strategies.

3. Visualization Techniques: Tools such as heatmap and

violin plots represent performance distributions across

different metrics, making it easier to communicate

44



and interpret weaknesses. For example, heatmaps

can visually indicate low-performance areas in

terms of recall, precision, or relevance, allowing

stakeholders to identify specific problem areas quickly.

Visualization supports the practical implementation

of weakness identification by clearly showing areas

where performance dips, guiding model improvement

initiatives in an accessible format.

Together, these methods provide a strategy for detailed,

data-driven analysis of model weaknesses, guiding focused

enhancement efforts to optimize the RAG system’s

effectiveness and reliability before deployment.

Figure 5: Marginal (topic) weakness analysis: recall &

precision

45



Figure 6: Marginal (topic) weakness analysis: relevancy

(sentence recall & precision)

Figure 7: Marginal (topic) weakness analysis: groundedness

& answer relevancy
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7 Discussion and Conclusion

This paper has presented a HCAT framework for testing and

validation of GLMs, specifically tailored for RAG systems

used in high-stakes applications like banking. By leveraging

the structured, bounded nature of RAG systems, where

generation is constrained by a defined document collection,

we address the inherent challenges of evaluating GLMs in

open-ended domains. Our proposed framework provides a

robust, scalable, and transparent solution for testing GLMs,

integrating multiple validation methodologies to enhance

model reliability, interpretability, and compliance.

The framework presented here offers several key benefits:

• Comprehensive Testing: Automatic query generation

through stratified sampling based on topic modeling

ensures thorough coverage of the knowledge base. This

systematic approach allows us to generate diverse and

representative queries that test the model across all

relevant topics and query types.

• Explainable Evaluation Metrics: By employing

embedding-based evaluation metrics, including

embeddings trained through contrastive learning

and specialized embeddings from NLI models, we

provide transparent and interpretable assessments.

This avoids reliance on black-box tools and allows for

in-depth analysis of semantic relevance, groundedness,
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and logical consistency between queries, documents,

and responses.

• Trustworthy Evaluations: Calibration with human

judgments aligns machine evaluations with human

perceptions, enhancing the reliability of automated

assessments. By accounting for the limitations of

algorithmic metrics, we ensure that the evaluation

reflects qualities valued by users.

• Robustness Assessment: It evaluates the model

stability against varied scenarios, such as adversarial

inputs, out-of-distribution queries, and linguistic

variations, ensuring reliable performance in diverse

practical contexts. This comprehensive robustness

testing uncovers vulnerabilities, ensuring consistent

performance under challenging conditions.

• Targeted Improvements: Weakness identification

through marginal and bivariate analysis enables

focused enhancements. By pinpointing specific topics

or query types where the model underperforms, we

can prioritize areas for improvement and optimize the

system’s overall effectiveness.

While the framework addresses many challenges, caution

must be taken due to certain limitations such as:

• Quality of Topic Modeling: The effectiveness of

stratified sampling depends on the accuracy of topic
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modeling. Inaccurate or overly broad topics may lead

to insufficient coverage or imbalanced sampling.

• Human Calibration Sample Size: The representativeness

of human evaluations may be limited by sample size

and diversity. Expanding the calibration dataset

with more extensive and diverse human judgments

can improve alignment between machine evaluations

and human perceptions, leading to more accurate

calibration.

• Evolving Language Models: As generative language

models continue to advance, evaluation methods must

adapt accordingly. Ongoing research into embedding

techniques and evaluation metrics is necessary to

keep pace with model developments and ensure the

framework remains effective and relevant.

In conclusion, the proposed framework addresses the

critical need for comprehensive and reliable evaluation of

generative language models, particularly within the context

of RAG systems. By systematically combining automatic

test generation, explainable and human-calibrated

evaluation metrics, robustness testing, and targeted

weakness identification, we enhance the trustworthiness of

these models.
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