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Banking: A Structured Approach For
Predictive Models
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Abstract

This paper presents a comprehensive overview of
model validation practices and advancement in the
banking industry based on the experience of manag-
ing Model Risk Management (MRM) since the incep-
tion of regulatory guidance SR11-7/0CC11-12 over a
decade ago. Model validation in banking is a crucial
process designed to ensure that predictive models,
which are often used for credit risk, fraud detection,
and capital planning, operate reliably and meet reg-
ulatory standards. This practice ensures that models
are conceptually sound, produce valid outcomes, and
are consistently monitored over time. Model valida-
tion in banking is a multi-faceted process with three
key components: conceptual soundness evalua-
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tion, outcome analysis, and ongoing monitor-
ing to ensure that the models are not only designed
correctly but also perform reliably and consistently
in real-world environments. Effective validation helps
banks mitigate risks, meet regulatory requirements,
and maintain trust in the models that underpin crit-
ical business decisions.

1 Introduction

In the modern banking landscape, models play pivotal roles
in critical decision-making processes, from credit risk assess-
ment and fraud detection to capital planning and stress test-
ing. As these models become more sophisticated and their
impact on financial institutions grows, the need for robust
validation practices has never been more pressing. Model
validation in banking is not merely a regulatory checkbox;
it is a crucial process that ensures the reliability, accuracy,
and effectiveness of the models upon which banks heavily
rely.

Model risk refers to the potential for adverse conse-
quences resulting from decisions based on incorrect or mis-
used models. These risks can lead to significant financial
loss, poor decision-making, and reputational damage for banks.
Model risk arises primarily for two reasons: (1) a model
may contain fundamental errors and produce inaccurate out-
puts, and (2) even a correct model may be used inappro-
priately, especially when applied in conditions beyond its
design scope, as indicated by the regulatory guidance SR11-
7/0OCC11-12 (Federal Reserve, [2011)). Managing model risk



begins with understanding the business purpose of the mod-
els, identifying what can go wrong, and considering unin-
tended consequences. These potential downsides need to
be translated into measurable metrics within the model, for
which a threshold of acceptable risk can be set.

Model validation, therefore, should not only focus on en-
suring that a model is technically sound but also on identify-
ing potential root causes of failure. This includes quantifying
the impact of these failures on the business and finding ways
to either prevent or mitigate the associated risks. The ul-
timate goal is to ensure that models are both accurate and
resilient in dynamic environments.

The complexity of financial markets, coupled with the
rapid advancement of machine learning and artificial intel-
ligence techniques, has led to the development of increas-
ingly intricate models. While these models offer unprece-
dented predictive power, they also introduce new challenges
in terms of interpretability, reliability, and potential for un-
intended consequences. In this context, model validation
serves as a critical safeguard, helping to identify and miti-
gate risks associated with model use.

Though we refer to this process as “validation”, it should
ideally begin during model development. According to SR11-
7/0CC11-12, “as a practical matter, some validation work
may be most effectively done by model developers and users”
(Federal Reservel 2011). It highlights that early validation
activities by developers are essential to ensuring that models
are conceptually sound and properly implemented. By inte-
grating validation steps during development, issues can be
detected and addressed before the model is fully deployed,



reducing the potential for downstream problems. Impor-
tantly, even though model developers might participate in
early validation steps, these should always be subject to crit-
ical review by independent parties to maintain objectivity
and ensure a thorough validation process.

This paper provides a comprehensive approach for pre-
dictive model validation. The depth and rigor of the vali-
dation steps outlined in this paper should be commensurate
with the model’s risk level. Models with higher risk war-
rant a more comprehensive validation process, covering all
aspects in greater detail, while lower-risk models may re-
quire emphasis on certain elements, such as basic outcome
analysis and periodic monitoring.

We aim to provide a review and advancement of model
validation practices in banking since the inception of regula-
tory guidance on Model Risk Management (MRM) through
SR11-7/0CC11-12 over a decade ago, focusing on three key
components: conceptual soundness evaluation, outcome anal-
ysis, and ongoing monitoring. We explore the methodolo-
gies, challenges, and best practices associated with each of
these components, drawing on both recent advancements
and practical industry experiences.

The conceptual soundness evaluation section delves into
the foundational aspects of model validation, including data
quality assessment, input design, and model structure eval-
uation. Ensuring that models are built on solid theoretical
grounds and align with established financial and statistical
principles is crucial.

In the outcome analysis section, we explore techniques
for identifying model weaknesses, assessing the reliability of



model outputs, and evaluating model robustness against in-
put noise and environmental changes. This section empha-
sizes rigorous testing and analysis to ensure models perform
as intended across a range of scenarios.

The ongoing monitoring section addresses the critical
need for continuous oversight of model performance. Strate-
gies for detecting data drift, concept drift, and other factors
that may impact model effectiveness over time are discussed.
Additionally, we explore the importance of periodic testing
and revalidation to ensure models remain compliant with
regulatory requirements and business objectives.

Throughout the paper, we emphasize the interdisciplinary
nature of model validation, which combines elements of statis-
tics, business, computer science, and regulatory compliance.
By providing a comprehensive overview of model validation
practices, this paper aims to serve as a valuable resource
for banking professionals, risk managers, regulators, and re-
searchers working at the intersection of modeling and tech-
nology.

2 Conceptual Soundness Evaluation

Conceptual soundness refers to assessing the foundation
and logical underpinnings of the data and model, ensuring
they align with the intended use case and industry stan-
dards. This stage involves evaluating the model design, data
and inputs, assumptions, and optimization strategies. The
objective is to confirm that the model is theoretically ap-
propriate, interpretable, and capable of producing reliable
results.



2.1 Data Quality and Suitability

Ensuring data quality and suitability is a foundational as-
pect of model validation in banking. High-quality data is
essential for building reliable predictive models, especially
in high-stakes environments where decisions based on model
outputs can significantly impact customers and financial per-
formance. This component focuses on verifying that the data
used for modeling is accurate, complete, relevant, and ap-
propriately processed.

2.1.1 Data Completeness

The dataset should be complete, with no missing values or
incomplete records. Missing values can introduce bias or
lead to inaccurate predictions if not handled properly. For
example, in a credit risk model, missing income data can
significantly affect the assessment of a borrower’s risk profile.

Data Checks for Missing Values:

e I|dentifying Missing Data: Regularly assess the dataset
for missing values using techniques like summary statis-
tics or visualizations (e.g., heatmaps) to identify pat-
terns of missingness.

e Handling Missing Values: Implement strategies for ad-
dressing missing data, which may include:

— Imputation: Filling in missing values using meth-
ods like mean, median, or mode imputation, or
more sophisticated techniques like K-nearest neigh-
bors or regression imputation.
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— Deletion: Removing records with missing values
if the proportion is small and won’t significantly
impact the dataset.

— Categorical Encoding: For categorical variables,
treating missing values as a separate category can
sometimes help retain useful information without
distorting the dataset.

2.1.2 Data Accuracy

The data should be accurate and correctly reflect the true
values of the underlying variables. Inaccurate data can lead
to poor model performance and misinformed decisions. For
example, errors in recording customer credit scores can severely
impact a model designed to assess credit risk.

Data Checks for Accuracy:

e Cross-Validation Against External Sources: Whenever
possible, validate the data against trusted external
datasets or known benchmarks to ensure accuracy.

e Automated Validation Rules: Implement rules to flag
anomalies, such as credit scores outside realistic ranges
(e.g., negative scores or excessively high scores) for re-

view.

2.1.3 Data Consistency

Data should be consistent across the dataset and should ad-
here to the same formats and standards. Inconsistencies can



arise from data entry errors, differing measurement units, or
variations in categorical values.

Data Checks for Consistency:

e Standardization of Formats: Ensure all data entries con-
form to a specified format (e.g., date formats, currency
symbols).

e Data Type Checks: Implement checks to verify that
numeric fields contain only numerical data, categorical
fields have defined categories, and dates are valid.

2.1.4 Data Relevance

The features used in the model must be relevant to the prob-
lem being addressed. Irrelevant features can introduce noise
and lead to overfitting, negatively impacting model perfor-
mance.

Data Checks for Relevance:

e Domain Knowledge Consultation: Involve subject mat-
ter experts to determine which variables are likely to
have predictive power for the task at hand.

e Feature Importance Analysis: After initial modeling,
analyze feature importance to identify which features
contribute meaningfully to the model’s predictions.



2.1.5 Data Outliers

Outliers are extreme values that differ significantly from
other observations in the dataset. They can arise from mea-
surement errors, data entry mistakes, or actual variability in
the data. In banking, outliers can significantly affect model
performance, especially in models sensitive to extreme val-
ues (e.g., linear regression).

Data Checks for Outliers:

There are various statistical methods for checking data
outliers (Zhao et al.l [2019)), including

e Univariate Checks: Basic techniques such as Z-score or
the IQR (Interquantile Range) method can be used to
identify univariate outliers. Values that fall outside 1.5
times the IQR above the third quantile or below the
first quantile can be flagged for further investigation.

e Isolation Forest: This is an advanced outlier detec-
tion method that works by isolating observations in a
dataset (Liu et al.|2008). It creates random partitions
and identifies anomalies based on how quickly they can
be isolated from the rest of the data. Isolation Forest
is particularly effective for high-dimensional datasets
and can help identify outliers that traditional univari-
ate methods might miss.

e DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise): This clustering method identifies
outliers based on the density of data points in the



feature space (Schubert et al.l |2017)). Points in low-
density regions compared to the surrounding data points
are classified as outliers.

Local Outlier Factor (LOF): This technique measures
the local density deviation of a given data point with
respect to its neighbors, helping to identify points that
have a significantly lower density than their neighbors,
thus flagging them as potential outliers (Breunig et al.|
2000).

PCA with Mahalanobis Distance: this combined ap-
proach leverages the strengths of both techniques to
enhance outlier detection.

a) Principal Component Analysis (PCA) is first ap-
plied to reduce the dimensionality of the dataset
while preserving its variance. This helps to vi-
sualize and capture the primary structure of the
data, making it easier to identify outliers.

b) Once the data is transformed into the principal
component space, the Mahalanobis distance is
calculated for each observation. Mahalanobis dis-
tance measures how far a point is from the mean
of a distribution, taking into account the covari-
ance among variables. Points with a large Ma-
halanobis distance relative to a defined threshold
(e.g., based on the chi-squared distribution) are
flagged as potential outliers.

This combined method is particularly effective in high-
dimensional datasets, as PCA helps mitigate the curse
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of dimensionality, while Mahalanobis distance allows
for an understanding of the multivariate relationships
among features.

Other than statistical methods, one may also check data
outliers by visualization techniques, e.g. employing box
plots or scatter plots to visually inspect the data for poten-
tial outliers. This helps in understanding the distribution
and identifying unusual observations.

Once outliers are identified, perform contextual exam-
ination by examine the outliers in context to determine if
they are valid observations (e.g., high-income individuals)
or if they result from errors or anomalies (e.g., data entry
mistakes).

After identifying outliers, one must decide on appropriate
handling strategies, such as:

e Capping: Transforming outlier values to a maximum
or minimum threshold to mitigate their influence on
model training.

e Exclusion: Removing outliers from the dataset if they
are determined to be erroneous or not representative
of the population being modeled.

2.2 Input Design and Control

Input Design and Control is an essential part of model
validation that focuses on selecting high-quality, relevant
features (variables) and ensuring that the input data is ap-
propriate for the model. This step involves addressing fea-
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ture selection, feature engineering, and controlling for data
quality to ensure that the model functions optimally.

2.2.1 Feature Engineering

Feature engineering is the process of transforming raw data
into meaningful input variables (features) that can improve
the performance of machine learning models. It involves se-
lecting, creating, or modifying features to make patterns in
the data more evident for the model, leading to better pre-
dictive accuracy. The quality of the features directly impacts
the model’s performance, interpretability, and robustness.

Constructing interpretable features — those that are easy
to understand and have a clear relationship with the out-
come of interest — is important to ensure that models are
not only highly predictive, but also conceptually sound in
the following sense.

e Improved Interpretability: Interpretable features directly
contribute to making the model more transparent, as
they provide a clear understanding of how each input
affects the prediction. This is particularly important
in regulated industries where decision transparency is
essential.

e Model Simplicity: By using well-designed, interpretable
features, you reduce the need for complex model struc-
tures. This can result in simpler models that perform
well without relying on black-box techniques, making
the overall system more understandable and easier to
maintain.
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e Trust and Explainability: Models built on interpretable
features are easier to explain to stakeholders, customers,
and regulators. This improves trust in the model’s de-
cisions, as the reasoning behind predictions is clear.

e Regularization and Robustness: Interpretable features
often lead to more robust models by avoiding overfit-
ting. Models that depend on simple, meaningful fea-
tures generalize better to new data and are less sensi-
tive to noise or irrelevant information.

When designing features for interpretability, it’s impor-
tant to:

e Simplify Complex Variables: Break down complex or
multi-dimensional data into simpler, intuitive compo-
nents. For example, instead of using a raw time series,
you might extract specific trends or seasonal compo-
nents that are easier to interpret.

e Use Domain Knowledge: Use knowledge from the spe-
cific domain to create features that align with business
logic or scientific understanding. For example, in fi-
nance, constructing features like debt-to-income ratio
or credit utilization provides more meaningful insight
than raw financial data alone.

e Avoid Overly Complex Interactions: While interactions
between features can improve model performance, they
should be chosen carefully to ensure they remain in-
terpretable. Simple interactions, such as the product
of two features with clear relationships, can be more
interpretable than complex polynomial combinations.
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e Consider Aggregation and Binning: Create features by
aggregating data points (e.g., averages, sums, or counts)
or by binning continuous variables into categorical ranges.
For example, transforming a continuous variable like
age into bins (e.g., 718-25”, 726-35", etc.) can make
the feature more interpretable while still retaining its
predictive power.

e Consider Monotonic Features: Features that have a mono-
tonic relationship with the target variable (where in-
creases or decreases in the feature consistently lead to
increases or decreases in the outcome) are more inter-
pretable. For example, higher values of a feature like
income generally lead to a better credit score, and this
clear trend aids in model understanding.

Feature engineering plays a critical role in model design
by ensuring that the input features are both interpretable
and relevant. Constructing clear, meaningful features en-
hances model transparency, performance, and the ability to
explain decisions, making them particularly valuable in high-
stakes and regulated environments.

2.2.2 Embedding Approaches

Embedding is the process of transforming raw data into
structured representations, making it suitable for machine
learning tasks like classification, regression, and clustering.
This transformation can occur in either lower-dimensional
or higher-dimensional spaces, depending on the complexity
of the data and the relationships between features.
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In traditional statistical modeling, similar transforma-
tions are commonly referred to as variable transformations
or basis function expansions. These approaches, such as
polynomial expansions or logarithmic transformations, have
long been used to represent non-linear relationships in a
linear form. Embeddings, however, extend these concepts
by leveraging more advanced techniques, enabling machine
learning models to capture richer patterns and interactions
in the data.

This section focuses on various embedding approaches
that project data into useful representations, exploring both
lower-dimensional and higher-dimensional transformations.
These embeddings are essential for improving the perfor-
mance of downstream machine learning tasks by creating
representations that are more structured, manageable, and
interpretable.

1. Principal Component Analysis (PCA) and Factor Analy-
sis: Lower-Dimensional Embeddings. PCA and Factor
Analysis are classical dimensionality reduction tech-
niques that create lower-dimensional embeddings by
identifying the most important components or latent
factors in the data. These methods reduce noise and
redundancy by projecting the data onto a smaller set
of dimensions while retaining the most informative fea-
tures.

Specifically, PCA projects high-dimensional data onto
orthogonal axes that account for the most variance in
the data. Factor Analysis, on the other hand, iden-
tifies latent variables that explain correlations among
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observed features.

. Neural Networks: Flexible Projections to Lower and Higher
Dimensions. Neural networks provide highly flexible
embedding frameworks that can generate either lower-
dimensional or higher-dimensional embeddings, depend-
ing on the architecture. Neural networks are partic-
ularly adept at capturing complex relationships and
non-linear interactions in data.

e Lower-Dimensional Embeddings: Autoencoders are
a type of unsupervised neural network that com-
press input data into a smaller set of latent vari-
ables by passing it through a bottleneck layer.
This lower-dimensional embedding reduces noise
and focuses on the most essential patterns in the
data.

For example, in a customer transaction dataset,
an autoencoder might reduce hundreds of pur-
chase behaviors into a smaller latent representa-
tion that preserves the key patterns for predicting
customer churn.

e Higher-Dimensional Embeddings: Multilayer Per-
ceptrons (MLPs) or attention mechanisms can
generate higher-dimensional embeddings by ap-
plying non-linear transformations across multiple
layers. These embeddings are useful when the
original data contains complex feature interac-
tions that are difficult to capture with simpler
models.
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For example, an MLP could project features like
credit history and transaction behavior into a higher-
dimensional space, allowing for more nuanced clas-
sification of credit risk.

3. Tree-Based Models: Higher-Dimensional Embeddings. Tree-
based models, such as Random Forests and Gradient
Boosted Trees, create higher-dimensional embeddings
by encoding complex, non-linear feature interactions.
These models do not explicitly reduce dimensionality
but instead create richer representations by expanding
the input space into decision paths or leaf indices.

Specifically, tree-based models generate embeddings
by mapping data into new feature spaces where deci-
sion rules, paths, or leaf indices represent interactions
between input variables.

The embedding outcome is a higher-dimensional rep-
resentation of the data, capturing complex, non-linear
relationships that simpler models may not detect, thus
enabling more accurate prediction models. It creates
one-hot-encoding for downstream task of regression or
classification. See (Cui et al., 2023) for such an exam-
ple of reformulating gradient boosted decision tree as
an generalized linear model of the terminal nodes.

4. Kernel Methods in Support Vector Machines (SVMs):
Projections to Higher Dimensions. Kernel methods in
SVMs create higher-dimensional embeddings by pro-
jecting data into spaces where complex, non-linear re-
lationships become linearly separable. This is achieved
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using kernel functions, which allow the model to oper-
ate in a higher-dimensional feature space without ex-
plicitly computing the transformation.

The common kernels like the Radial Basis Function
(RBF) or polynomial kernels map input data into higher-
dimensional spaces, allowing models to find linear de-
cision boundaries more easily.

The embedding outcome is a higher-dimensional em-
bedding where complex patterns in the data are more
separable, improving the performance of tasks like clas-
sification or regression.

For example, an RBF kernel applied to a transaction
data could transform variables into a higher-dimensional
space, enabling the SVM to predict fraudulent trans-
actions with greater accuracy.

. Simple Polynomial Embeddings: Capturing Non-Linear
Interactions. Polynomial embeddings are a straight-
forward yet powerful technique for generating higher-
dimensional embeddings by expanding input features
into polynomial terms, including interaction terms, squared
terms, or higher-order terms. These terms capture
non-linear relationships between the original features,
transforming the data into a space where models can
learn more complex patterns, thus improving model
performance.

The embedding outcome is a higher-dimensional fea-
ture space where non-linear relationships are more ap-
parent and can be modeled more easily.
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For example, in a real estate dataset, a polynomial em-
bedding could expand features like square footage and
number of rooms into higher-order terms (e.g., (square
footage)?, (square footage) x (number of rooms)), help-
ing a regression model capture more complex relation-
ships between house size and price.

6. Fourier and Basis Function Expansions: Embeddings for
Periodic and Non-Linear Patterns. Fourier and basis
function expansions are commonly used for both lower-
and higher-dimensional embeddings. These transfor-
mations are especially effective at capturing periodic
and non-linear patterns in the data. Specifically, the
Fourier transformations project data into a frequency
domain to capture periodic patterns, while the basis
function expansions use functions like polynomials or
splines to capture complex non-linear relationships.

The embedding outcome is a compact frequency-based
embedding (Fourier) or an expanded feature space (ba-
sis function expansions) that enhances the ability of
models to capture periodic or non-linear interactions.

For example, Fourier embeddings are useful for time-
series data like weather forecasts, where periodic pat-
terns (e.g., temperature ﬂuctuations) are crucial for
making accurate predictions. Polynomial basis func-
tion expansions, on the other hand, are ideal for cap-
turing non-linear interactions in datasets with complex
feature relationships.

7. Attention Mechanisms: Higher-Dimensional Embeddings
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with Contextual Focus. Attention mechanisms, partic-
ularly from transformer models, can generate higher-
dimensional embeddings that focus on the most rele-
vant features for a given task. This method assigns
different importance weights to features, creating em-
beddings that capture contextual dependencies.

The embedding outcome is a context-dependent em-
bedding that emphasizes the most relevant features
and relationships for the task at hand.

For example, in a loan approval system, an attention-
based model might generate embeddings that priori-
tize income and debt-to-income ratio for some appli-
cants, while focusing on payment history for others,
depending on the context.

The selection of an appropriate embedding technique de-
pends on the dimensionality of the original data and the
complexity of the relationships between features:

e Lower-Dimensional Embeddings (e.g., PCA, autoen-
coders) are suited for cases where the data is noisy,
redundant, or overly complex. These embeddings sim-
plify the data while retaining key patterns, making it
easier for downstream models to learn from the data.

e Higher-Dimensional Embeddings (e.g., tree-based mod-
els, polynomial expansions, attention mechanisms) are
useful when the data contains non-linear relationships
that need to be modeled in a richer, expanded feature
space. These embeddings capture complex patterns
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and interactions that cannot be easily represented in
the original space.

Embedding methods are essential for preparing data by
transforming it into structured, lower- or higher-dimensional
representations. Lower-dimensional embeddings simplify the
data, removing noise and redundancy, while higher-dimensional
embeddings expand the feature space to capture complex,
non-linear relationships. Techniques like neural networks,
tree ensembles, kernel methods, and polynomial expansions
provide flexible options for generating useful embeddings,
each tailored to the specific needs of the data and the down-
stream task.

2.2.3 Variable or Feature Selection

The goal of feature selection is to identify the most rele-
vant and influential variables while excluding irrelevant or
redundant features. This process helps improve model per-
formance, prevent overfitting, and enhance interpretability.
Proper feature selection is particularly important in banking
models where interpretability is critical for decision-making
and regulatory compliance. To select the most appropriate
variables, several techniques can be employed:

e Filter Methods: Statistical techniques like correlation
analysis, mutual information, or variance thresholding
are used to identify and exclude weak predictors that
do not contribute meaningfully to the outcome.

e Wrapper Methods: Methods such as recursive feature
elimination (RFE) evaluate different combinations of
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features and rank them based on their impact on model
performance. These techniques help to fine-tune the
selection of features based on their predictive power.

Embedded Methods: These methods, such as LASSO
(Least Absolute Shrinkage and Selection Operator) or
Ridge regression (Hastie et all|2015)), perform feature
selection during the training process by adding regu-
larization penalties to reduce the impact of irrelevant
variables. This ensures that only the most important
features contribute to the final model.

Conditional Independence Tests for Causality: In bank-
ing, where causality is crucial for making decisions
(e.g., determining whether a customer’s income di-
rectly affects loan default risk), conditional indepen-
dence tests can be used to identify causal relationships
between variables. Conditional independence tests as-
sess whether a feature (e.g., income) is conditionally
independent of the target variable (e.g., default) given
other variables (e.g., credit history). Features that are
not conditionally independent are more likely to have
a causal relationship with the target variable and are
prioritized during feature selection.

Causal feature selection is particularly valuable in regu-
latory environments, as it helps banks understand the
drivers behind model predictions. It also enhances
model robustness by ensuring that the selected fea-
tures have a direct impact on the outcome, rather than
being merely correlated with it. For example, condi-
tional independence tests might reveal that while a
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customer’s geographical location is correlated with de-
fault risk, it may not be a causal factor when income
and credit history are considered.

2.2.4 Input Control

Managing and controlling the quality of inputs is essential
for ensuring that the model is not influenced by noise, ir-
relevant features, or biased data. Banks must continuously
monitor the inputs fed into the model to detect shifts or
anomalies in the data distribution. Sensitivity analysis is
often used to assess how variations in input features affect
model predictions. For example, a small change in a cus-
tomer’s income should not cause a dramatic shift in their
creditworthiness unless other factors (such as debt levels)
are also altered significantly.

Additionally, data validation checks can help ensure that
the inputs remain stable and valid over time. For example, in
a credit scoring model, monitoring the consistency of income
and employment status data over time helps maintain the
accuracy and reliability of the model.

2.3 Model Design, Methodology Selection,
and Assumptions

Model Design and Methodology: The design and method-
ology of the model must be suitable for the business objec-
tive and the type of data it will process. In banking, models
are frequently used for tasks such as credit scoring, fraud
detection, loss forecasting/stress testing or loan approval.
It is essential to choose a modeling approach that aligns
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with the structure of the data (e.g., logistic regression for
binary classification problems like default prediction, or de-
cision trees for explainability). More advanced models, such
as neural networks or ensemble methods, may be selected
for complex tasks where traditional statistical models may
fall short. However, model complexity must be justified,
particularly in a regulatory context where interpretability
is critical. Inherently interpretable machine learning is highly
relevant because they offer the best of both worlds—high
performance while maintaining interpretability (see Section
2.4). Unlike black-box models, these models allow users to
directly understand the relationships between input features
and predictions, making it easier to trust, explain, and de-
bug decisions.

Model Assumptions: Every model relies on assump-
tions about the data and relationships between variables.
These assumptions need to be clearly stated and validated
against the actual characteristics of the data. For instance,
linear regression models assume linear relationships between
inputs and outputs, while credit risk models may assume
independence between predictors. Failure to validate these
assumptions could lead to unreliable model performance, es-
pecially under changing economic conditions.

Benchmarking: A critical aspect of conceptual sound-
ness is comparing the performance of the model against
alternative models or established benchmarks. This pro-
cess involves testing the model against simpler or more in-
terpretable models (see Section 2.4 Explainability and In-
terpretability) to ensure that any increase in complexity
leads to a demonstrable improvement in predictive power
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or interpretability. Benchmarking can also involve compar-
ison against industry-standard models or regulatory expec-
tations.

Benchmarking with both more complex models and sim-
pler, inherently interpretable models is essential for achiev-
ing a balance between performance and interpretability.

e Complex models like deep learning or ensemble meth-
ods can capture intricate patterns and interactions in
data, potentially improving prediction accuracy. Bench-
marking with these models helps explore whether there
is a significant performance gain compared to simpler
models and justifies their use when higher accuracy is
crucial, such as in highly competitive or high-stakes
scenarios.

e Simpler models such as decision trees, linear models,
or generalized additive models (GAMs) provide inher-
ent interpretability, making it easier to understand and
explain the results. Benchmarking with simpler mod-
els ensures that, whenever possible, an interpretable
model can be chosen if it achieves similar performance
to more complex alternatives. This is particularly im-
portant for applications where transparency, regula-
tory compliance, and trust in the model’s decisions
are required.

e Inherently interpretable models (see Section 2.4) allow
organizations to achieve high accuracy without sacri-
ficing transparency, which is crucial in regulated in-
dustries like finance and healthcare. Inherently inter-
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pretable models provide a reliable, efficient, and trans-
parent solution, avoiding the need for post-hoc ex-
planation techniques while still delivering high-quality
predictions.

Sound Modeling Practices: Ensuring that the se-
lected modeling approach aligns with sound statistical and
machine learning practices is crucial. For example, in credit
risk models, there is a regulatory expectation that the mod-
els follow the principles of Basel frameworks. Such practices
include robust out-of-sample testing, model validation on
unseen data, and evaluating model performance under vari-
ous economic scenarios. Moreover, internal benchmarks and
peer comparisons can be applied to validate the appropri-
ateness of the model and ensure it adheres to the highest
industry standards.

2.4 Explainability and Interpretability

Explainability: The model explainability is crucial, par-
ticularly in high-stakes decision-making environments like
banking, where financial decisions directly affect customers
and regulatory compliance. For example, decision trees and
logistic regression models are inherently more interpretable
because they provide direct insight into how predictions are
made. However, more complex models like neural networks
or ensemble methods often require explainability tools such
as Partial Dependent Plot (PDP; [Friedman| (2001)), Accu-
mulated Local Effect (ALE; |Apley and Zhu| (2020)) or local
explainability techniques such as Shapley Additive Expla-
nation (SHAP; Lundberg and Lee| (2017)) or Local Inter-
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pretable Model-agnostic Explanations (LIME; Ribeiro et al.
(2016)) to ensure that the decision-making process is un-
derstood and can be communicated clearly to stakeholders,
including regulators. However, these post-hoc explainabil-
ity tools are approximations; thus, they may not accurately
explain the model. Complex machine learning can also be
made inherently interpretable when their architectures are
properly constrained as described below. See also[Yang et al.
(2020) for a constructive approach to explainable neural
networks through interpretability constraints and [Sudjianto
and Zhang| (2021) for a practical guide of developing inher-
ently interpretable machine learning models.

2.4.1 Locally Interpretable Machine Learning Mod-
els

There are available locally interpretable machine learning
models, such as ReLU Deep Neural Networks (DNNs) and
Boosted Linear Trees, allow for clear, region-specific expla-
nations of their predictions. In ReLU DNNs, the model be-
haves as a piecewise linear function, where each input point
falls into a region defined by ReLU activations. Similarly,
in Boosted Linear Trees, each terminal node contains a lin-
ear model, and predictions are made by routing inputs to
specific leaves, where the local linear model governs the pre-
diction. This provides exact local interpretability without
needing post-hoc explanations.
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Deep ReLU Networks

A Deep ReLLU Network is a type of deep neural network that
uses the Rectified Linear Unit (ReLU) as its activation func-
tion, defined as o(z) = max(0,z), which outputs the input
directly if positive and returns zero otherwise. This activa-
tion introduces non-linearity into the network, enabling it to
model complex relationships in the data.

In a deep ReLU network, each layer applies a linear trans-
formation followed by the ReLU activation, forming a hier-
archical structure that learns increasingly abstract features
from the input.

A ReLlU network is locally interpretable because it acts
as a piecewise linear function. The network divides the in-
put space into regions, each defined by a specific activation
pattern, where it behaves as a local linear model. For any
input, the network predictions are governed by a correspond-
ing local linear model, providing exact local interpretability.
Therefore, there is no need for post-hoc explanation meth-
ods like LIME or SHAP, which approximate local behaviors.
See details in (Sudjianto et al.l |2020)).

Boosted Linear Trees

A Boosted Linear Tree model, like in Light GBM (Ke et al.,
2017)), is a decision tree where each terminal/leaf node con-
tains a linear model instead of a constant value. The tree
partitions the data, and within each terminal node, a linear
model is fitted to the data points that fall into that node.
This approach combines the non-linear partitioning power of
decision trees with the predictive strength of linear models
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within each segment of the data.

The model is locally interpretable because each input fol-
lows a path to a specific terminal node, where a local linear
model is applied. Additionally, the linear models from differ-
ent terminal nodes can be aggregated, and the aggregation
of linear models results in another linear model. Therefore,
this structure not only enables local interpretability but also
preserves the overall linear relationship in the data across
segments. Thus, it provides exact local explanations, mak-
ing it easier to understand the model’s behavior without the
need for post-hoc explanation techniques.

2.4.2 Functional ANOVA Structure for Globally In-
terpretable Model

The functional ANOVA (fANOVA) structure can be used
to constrain machine learning models to be globally inter-
pretable by breaking down the model into main effects and
low-order interactions. This decomposition simplifies the
model by focusing on the most important components and
interactions, allowing users to understand how individual
features and their combinations influence the model’s pre-
dictions. Because fANOVA models focus on capturing low-
order interactions and main effects, they offer a natural
framework for global interpretability, ensuring the model is
not only predictive but also understandable at a high level,
without the need for post-hoc explanations.

The fANOVA structure is a method that decomposes
a complex function (or model) into simpler components,
specifically main effects of individual features and low-order
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interactions between features. This allows the model to cap-
ture how each feature individually affects the output and
how certain combinations of features contribute to predic-
tions. In fANOVA, the function f(x) is expressed as a sum
of additive components:

f(@)=go+ 2 g0(x;) + 3 gy, ) + -
7 <l
where g is the overall mean, g;(z;)’s are the main effects of
individual features, and gj;(x;,2;)’s capture pairwise inter-
actions between features. Higher-order interactions can also
be included, but typically only low-order interactions (e.g.,
pairwise) are considered for interpretability.

There are several different implementation of fANOVA
models with second-order interactions (Lou et al., 2013 Yang
et al., 2021} |Hu et al., 2023)). Typically, the model construc-
tion steps involve the following:

e Decomposition: The model function is decomposed into
main effects and interaction terms, ensuring that the
complexity is manageable and interpretable.

e Regularization: To maintain interpretability, regular-
ization techniques can be applied to limit the com-
plexity of interactions (focusing on a few low-order
interactions) and emphasize the importance of main
effects.

e Machine Learning: Machine learning models, such as
gradient boosting or neural networks, can be trained
to estimate these components. The learning process
identifies the most important features and interactions,
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ensuring the model is expressive while remaining inter-
pretable.

Global Interpretability: By focusing on main effects and
low-order interactions, the resulting model is globally in-
terpretable, meaning the behavior of the model across the
entire input space is understandable. Each feature’s contri-
bution and interaction can be explicitly understood without
the need for complex post-hoc explanation techniques. This
fANOVA approach constrains the model complexity and en-
sures interpretability while still leveraging the power of ma-
chine learning to find patterns and interactions in the data.

Regulatory Compliance: Banks must comply with regula-
tory requirements for model transparency and risk manage-
ment. In jurisdictions where models are subject to regula-
tory review or approval, such as under SR 11-7 guidelines
(Federal Reserve, [2011)), explainability is essential. CFPB
(Consumer Financial Protection Bureau) Circular 2022-03
(CFPB, [2022) clarifies that creditors using complex algo-
rithms for credit decisions must comply with the Equal Credit
Opportunity Act (ECOA) by providing specific reasons for
any adverse actions taken against applicants, such as credit
denials. Regardless of the technology used, creditors are
required to disclose precise reasons related to the decision-
making process and cannot excuse noncompliance by claim-
ing that their algorithms are too opaque to understand.
Creditors must also ensure the accuracy of any post-hoc
explanations, as such approximations may not be viable
with less interpretable models. The model validation pro-
cess must provide clear justifications for the model’s struc-
ture, inputs, and outputs, ensuring that it meets legal and
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regulatory standards.

2.5 Parameter and Hyperparameter Opti-
mization

Model Parameters: The parameters of a model are the
coefficients or values that are learned during the training
process. For example, in a linear regression model, the pa-
rameters are the weights associated with each input feature.
These parameters must be estimated correctly using well-
established techniques such as maximum likelihood estima-
tion or gradient-based optimization to ensure accurate pre-
dictions.

Hyperparameter Tuning: Hyperparameters, unlike
model parameters, are set before training and control the
learning process. Examples include the regularization strength
in a logistic regression model or the number of layers in a
neural network. In banking models, hyperparameter tuning
is crucial to avoid both underfitting and overfitting. Tech-
niques like grid search or random search, often combined
with cross-validation, are employed to find the optimal hy-
perparameter values that balance model complexity and per-
formance. Regularization techniques (e.g., L1 or L2 penal-
ties) may be applied to prevent overfitting, especially when
dealing with high-dimensional financial data.

Model replication and stability testing are essential com-
ponents of parameter and hyperparameter choice assessment.

e Model Replication: Replicating the model involves
building it anew using different samples of data or sub-
sets (e.g. via bootstrapping) to verify that it produces
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consistent results. This helps validate the model’s per-
formance across various datasets and ensures that its
predictions are not merely artifacts of specific training
data.

Stability Testing: Stability testing assesses whether
the model’s predictions remain consistent over time
and across different segments of the population. Key
aspects include:

— Random Seed Variation: Stability testing should
involve using different random seeds during the
model training and testing split. By varying the
random seed, banks can evaluate how changes in
the data partitioning affect model performance.
If the model yields similar performance metrics
across different seeds, it suggests that the model
is stable and not overly sensitive to specific data
splits.

— Stochastic Optimization Initialization: Many ma-
chine learning models utilize stochastic optimiza-
tion methods (e.g., stochastic gradient descent).
The initialization of parameters and the random
sampling of data points can influence the final
model performance. By running the model with
different random seeds for initialization, banks
can assess whether the model converges to sim-
ilar solutions consistently. Significant variations
in model performance due to different initializa-
tions may indicate instability and the need for
further investigation or adjustments.
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3 Outcome Analysis

Outcome analysis is a critical component of model vali-
dation in banking, designed to assess the performance and
behavior of the model in real-world applications. This anal-
ysis aims to determine how well the model’s predictions
align with actual outcomes and whether the model remains
reliable and accurate under various conditions. Outcome
analysis is essential for identifying any deficiencies in the
model, improving its robustness, and ensuring that it adapts
to changes in input data and environmental conditions. In
banking, this is especially important as models are used for
high-stakes decisions like credit scoring, fraud detection, and
risk management. Outcome analysis process focuses on four
key components: identifying model weaknesses, assessing
the reliability of the model outputs, evaluating robustness
against input noise to prevent benign overfitting, and test-
ing the model’s resilience to distribution drift and environ-
mental change. Among others, the PIML toolbox (Sudjianto
et al 2023) provides a suite of model diagnostic tools for
outcome analysis.

3.1 Identification of Model Weakness

The first step in outcome analysis is to systematically iden-
tify weaknesses or shortcomings in the model. This involves
evaluating the model’s performance under a wide range of
conditions and use cases to uncover areas where it may strug-
gle or produce unreliable results. In banking, this is espe-
cially important as models are used for high-stakes decisions
like credit scoring, fraud detection, and risk management.
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Key methods for identifying model weaknesses include:

e Performance Decomposition: Decomposing the model’s

performance across different segments of data, such

as geographic regions, or loan categories, helps iden-

tify whether the model performs well across all cases

or struggles with certain subgroups. For example, a

credit scoring model may perform well overall but ex-

hibit higher error rates for minority applicants, indi-

cating a potential fairness issue.

e Error Analysis: Examining the types of errors the model

makes (e.g., false positives, false negatives) can reveal

specific conditions under which the model fails. For

instance, a loan approval model might falsely predict

low-risk customers as high-risk, leading to missed lend-

ing opportunities.

e Backtesting and Stress Testing: Regular backtesting

(comparing model predictions with actual historical

data) and stress testing under extreme conditions (e.g.,

financial crises or market shocks) are useful for detect-

ing weaknesses that only emerge under particular eco-

nomic scenarios.

Identifying these weaknesses early allows the bank to ad-

dress vulnerabilities before the model is deployed in high-

stakes environments, such as credit approval or risk man-

agement processes.

A primary goal of model weakness identification is to

identify segments or clusters where the model is weaker and
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prone to errors. Understanding these weaknesses helps im-
prove the model and ensures that it remains reliable across
different population groups, data ranges, or scenarios. Weak-
ness identification typically involves performance decompo-
sition, identifying key variables and ranges of values that
contribute most to the model’s underperformance, and de-
termining where the model overfits or underfits.

Performance Decomposition by Segments or Clus-
ters

Performance decomposition involves breaking down the model’s
performance across different subgroups or clusters of the
population to pinpoint where it performs well and where

it struggles. These subgroups could be based on geographic
regions, loan types, or other relevant dimensions in the bank-
ing context.

e Segmentation by Key Variables: The model’s predic-
tions are analyzed across various subgroups based on
key variables like loan type, loan-to-value, and credit
score. For instance, a credit risk model might per-
form well for middle-income borrowers but poorly for
high-income or low-income groups. By segmenting the
data, banks can identify specific areas where the model
underperforms.

e Clustering for Latent Patterns: Clustering techniques
such as k-means clustering or hierarchical clustering
can be used to group similar instances together based
on input features, without pre-defined segments. This
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allows the identification of latent patterns in the data
where the model’s performance varies significantly. For
example, a cluster of borrowers with thin credit history
and low credit scores might exhibit high model error
rates, indicating a potential model weakness in han-
dling high-risk borrowers.

Identifying Variables and Their Value Ranges Con-
tributing to Weakness

Once performance decomposition has identified underper-
forming segments or clusters, it’s important to investigate
the specific variables and ranges of values that are most as-
sociated with model weakness. This step helps pinpoint why
the model struggles in certain areas and provides actionable
insights for improvement.

e Variable Importance Analysis: After segmenting the data,
a variable importance analysis is conducted to iden-
tify which features (e.g., income, debt-to-income ratio,
loan term) contribute the most to prediction errors.
For example, in a credit scoring model, the analysis
might reveal that income and credit history have the
largest impact on prediction errors in certain popu-
lation segments, such as high-net-worth individuals.
This suggests that the model may need more refined
handling of income variability or credit history for such
segments.

e Range Analysis: Once important variables are identi-
fied, their specific value ranges contributing to model
weakness are further analyzed. For example:
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— Loan-to-Value (LTV) Range: A model might per-
form well for borrowers with low LTV range but
produce errors for high LTV. This range analysis
helps identify where the model struggles to gen-
eralize, leading to inaccurate risk assessments for
extreme income values.

— Credit Score Range: The model may have high
accuracy for credit scores between 600 and 750
but fail to predict accurately for individuals with
scores below 500 or above 800, where the risk fac-
tors may behave differently and require additional
model refinement.

By identifying these specific value ranges, model ad-
justments can be made to improve its performance in
weak areas. For instance, creating additional feature
interactions or non-linear terms for high-income bor-
rowers could reduce errors in that segment.

Underfitting and Overfitting Detection

Another critical aspect of identifying model weakness is de-
termining whether the model is underfitting or overfitting
in specific segments or for certain features. Understanding
these behaviors ensures that the model remains generaliz-
able and reliable.

Underfitting: Underfitting occurs when the model is
too simple to capture the underlying patterns in the data,
resulting in poor performance across all or some segments.
In performance decomposition, underfitting is identified by
examining areas where the model consistently makes errors
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or where its predictions are far from the actual outcomes.
Common signs of underfitting include:

e High Error Rates Across Segments: If certain segments,
like borrowers with high LTV and debt-to-income, con-
sistently show higher error rates, the model might be
underfitting in those areas due to a lack of complexity
or missing interactions between variables.

e Biasin Predictions: If the model tends to produce overly
simplified predictions (e.g., always predicting low risk
for all borrowers in a particular segment), this can in-
dicate underfitting. Adding more features, introduc-
ing nonlinear or interaction terms, or using a more
sophisticated model might be required to capture the
nuances in these segments.

Overfitting: Overfitting occurs when the model be-
comes too complex and fits the noise in the training data,
leading to poor generalization to new, unseen data. Overfit-
ting can often be identified through:

e Excessively Low Training Errors but High Test Errors:
In certain segments, the model may show near-perfect
performance during training (indicating overfitting) but
fail to generalize well on new data from the same seg-
ment. For example, the model may overfit to high-
income borrowers by capturing specific patterns in the
training data that do not generalize to other high-
income borrowers.

e Overly Complex Patterns for Small Segments: Overfit-
ting can occur when the model learns overly complex
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or irrelevant patterns for small or rare segments of the
data. For instance, a loan approval model may overfit
to a small group of very high-risk borrowers, leading
to poor predictions for similar but distinct cases in the
future.

Regularization techniques such as L1/L2 regulariza-

tion, dropout layers, or early stopping can help prevent over-

fitting by controlling model complexity and ensuring that

the model generalizes well across all segments.

Actionable Insights for Model Improvement

Identifying segments with underfitting or overfitting pro-

vides actionable insights for model refinement. This might

involve:

e Adding Interaction Terms: For segments where the model
is underfitting, adding interaction terms between vari-
ables can help capture more complex relationships (e.g.,
interaction between income and employment history).

Regularization: To prevent overfitting in certain seg-
ments, regularization techniques can be applied to sim-
plify the model and reduce the impact of irrelevant
variables.

Segment-Specific Models: In some cases, creating sep-
arate models for different population segments (e.g.,
separate credit risk models for high-net-worth individ-
uals and low-income borrowers) may improve overall
performance.
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3.2 Reliability or Output Uncertainty

Prediction uncertainty refers to the lack of confidence in
a model’s predictions, which can arise from factors such as
noisy data, data sparsity, or model limitations. Identifying
regions with high uncertainty is crucial because it highlights
where the model’s predictions are less reliable, allowing for
targeted improvements. Factors driving this uncertainty in-
clude data quality issues (e.g., noise, outliers, or shifts in dis-
tribution) and instability in model predictions due to feature
interactions or poor fit in specific regions.

One of the core objectives of outcome analysis is to as-
sess the reliability of the model predictions and estimate
the uncertainty associated with its outputs. In banking,
understanding and managing the uncertainty of a model is
critical to avoid undue risks in decision-making processes.

e Uncertainty Estimation: Models inherently produce pre-
dictions with varying degrees of uncertainty. For in-
stance, in a credit risk model, uncertainty may arise
from incomplete data or outlier behavior. Techniques
such as conformal prediction can be used to quantify
prediction intervals, providing banks with a confidence
level around each prediction.

e Prediction Reliability: Banks must evaluate whether
the model predictions are consistent and reliable over
time. Reliability is especially important in high-stakes
decision-making, where erratic model behavior could
lead to significant financial losses. Calibration plots
(comparing predicted probabilities to actual outcomes)
and Brier scores (measuring prediction accuracy) and
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conformal prediction with quantile regression are often
used to evaluate reliability.

e Quantifying Risk of Model Misuse: Banks should also
analyze the reliability of the model in scenarios of
model misuse or misinterpretation, ensuring that decision-
makers understand when the model’s outputs are less
trustworthy and how to act on them responsibly. For
example, uncertainty in creditworthiness predictions
may lead to more conservative loan approvals under
uncertain conditions.

To address these issues and improve the model, consider:

e Uncertainty Quantification (UQ): Use methods like con-
formal prediction to generate prediction intervals that
offer a measure of confidence for each prediction. Split
conformal prediction is a method for uncertainty quan-
tification that generates prediction intervals with sta-
tistical guarantees (Vovk et al.,|2005; Shafer and Vovk]
2008)). The approach is model-agnostics, simple and
computationally efficient, offering a way to estimate
uncertainty for any machine learning model.

Key Steps in Split Conformal Prediction:

1. Data Splitting: The dataset is split into two parts—one
for training the model and the other for calibra-
tion. The model is trained on the training set.

2. Residual Calculation: The model’s residuals (dif-
ferences between actual values and predictions)
are calculated on the calibration set.
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3. Prediction Interval Construction: Using the resid-
uals from the calibration set, a prediction interval
is constructed for each new prediction. This in-
terval contains the true outcome with a certain
probability, providing a measure of uncertainty.

e Feature Sensitivity Analysis: Identify which features con-
tribute most to uncertainty and focus on improving
data quality or feature engineering for those.

e Model Selection, Regularization and Retraining: Con-
sider alternative modeling approach, apply techniques
like regularization, hyperparameter tuning, and noise-
resistant training methods to make the model more
robust in regions of high uncertainty.

By assessing output uncertainty, banks can ensure that
decision-making is based on sound probabilities and miti-
gate the risk of unforeseen losses due to overly optimistic or
pessimistic predictions.

3.3 Robustness against Input Noise to Avoid
Benign Overfitting

A robust model should remain reliable even when exposed to
small changes or noise in input data. Benign overfitting,
which occurs when a model fits noise or minor variations in
the training data, is a common problem in complex mod-
els, particularly in machine learning. In banking, benign
overfitting can lead to models making accurate predictions
on historical data but failing to generalize to new, unseen
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data. This can result in poor decision-making in dynamic
environments.

e Noise Sensitivity Testing: To assess robustness, small
perturbations are introduced into the input data to
evaluate how much the model’s predictions change.
For instance, a small change in a customer’s credit
score or income level should not result in dramatically
different loan approval outcomes. Sensitivity analyses,
which introduce noise in input features, help ensure
that the model is not overfitting to insignificant vari-
ations.

e Invariance Testing: Another approach is to test for in-
variance—the model should produce the same output
even when irrelevant or redundant features are altered.
For example, slight changes in non-critical inputs (e.g.,
formatting changes in application data) should not af-
fect the model’s predictions.

e Regularization Techniques: Models should be built with
regularization techniques (e.g., L2 regularization, dropout
layers) that constrain model complexity and prevent
overfitting. This reduces the model’s reliance on noise
in the data and ensures that it generalizes well to un-
seen examples.

By focusing on robustness against noise, banks can pre-
vent the harmful effects of benign overfitting and ensure that
their models perform reliably on new data in real-world con-
ditions.
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To improve the robustness of machine learning models,
e.g. Gradient-Boosted Decision Trees (GBDT) with XG-
Boost implementation (Chen and Guestrin, 2016)), it is es-
sential to first identify the factors driving the model’s sen-
sitivity to noise. The key factors contributing to this sensi-
tivity include:

e Overfitting: Complex models tend to overfit to training
data, making them sensitive to small perturbations in
new or unseen data.

e Feature Interactions: Non-linear interactions between
features can amplify noise sensitivity, particularly if ir-
relevant or weakly correlated features are heavily weighted.

e High Variance in Decision Trees: Individual decision
trees in GBDT may be too specific to the training data,
leading to instability when applied to new samples.

e Outliers: Outliers in the training data can dispropor-
tionately influence model performance, especially if
they are not properly handled.

e Unstable Input Features: Features with high variance or
noisy data can cause the model to produce unreliable
predictions.

The techniques for improving model robustness include

1. Regularization: Apply L1 (Lasso) or L2 (Ridge) regu-
larization to penalize model complexity, reducing the
weight of less important features and preventing over-
fitting.
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2. Feature Selection and Engineering: Use techniques to
reduce the feature set to those that are most relevant,
eliminating noise from irrelevant features.

3. Ensemble Averaging: Use techniques like bagging or
averaging across multiple models or trees in the GBDT
to reduce variance and stabilize predictions.

4. Pruning Trees and Early Stopping: Regularly prune trees
in the GBDT to prevent them from becoming too deep
or too many and specific to the training data, thereby
reducing noise sensitivity.

5. Robust Training: Introduce noise or perturbations into
the training data intentionally (e.g., via adversarial
training) to help the model learn more robust decision
boundaries.

By identifying these factors and applying targeted strate-
gies, you can significantly improve the robustness and sta-
bility of machine learning models, particularly in noisy en-
vironments. See |Cui et al.| (2023)) for further details about
enhancing robustness of gradient-boosted decision trees.

3.4 Resilience Against Distribution Drift and
Environment Change

Resilience refers to the model’s ability to maintain accurate

performance in the face of changes in the input data distri-

bution or external factors. In banking, resilience is critical
because economic conditions, customer behaviors, and regu-
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latory environments can shift over time, impacting how well
models perform.

Distribution Drift Analysis: Over time, the distri-
bution of input data (e.g., income levels, employment rates,
customer behaviors) may shift, causing the model’s predic-
tions to become less accurate.

e Time-Based Analysis: Evaluate model performance on
different time slices of data to check for stability. This
helps identify whether the model’s effectiveness dimin-
ishes over time, indicating potential drift or the need
for updates.

e Segment Analysis: Examine how well the model per-
forms across various behavioral segments or clusters.
Significant variations in performance across segments/clusters
may suggest the need for model adjustments or the in-
troduction of segment-specific models.

e Stress Testing for Stability: Perform stress tests by sim-
ulating extreme conditions (e.g., economic downturns)
to evaluate how model predictions behave under stress.
Stability under various stress conditions is crucial for
ensuring the model’s reliability in real-world scenarios.

Identification of Important Variables: To assess re-
silience, it is crucial to identify which variables are most
significant for the model’s predictions and where changes in
their distributions could significantly impact model perfor-
mance (Sudjianto et al.,|2023). This involves:

e Information-Theoretic Measures: Use information-theoretic
metrics to assess feature importance by quantifying the
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distance between distributions of the features. Mea-
sures such as Jensen-Shannon Divergence (JSD) or
Wasserstein Distance (see also Section 4.2.1) can be
employed to determine how much information a fea-
ture provides about the target variable. For instance:

— Jensen-Shannon Divergence (also known as
Population Stability Index/PSI) is a symmetric
measure that quantifies the similarity between
two probability distributions. A higher JSD indi-
cates that changes in the feature distribution may
significantly impact the model’s performance.

— Wasserstein Distance, also known as the Earth
Mover’s Distance, measures the cost of transform-
ing one distribution into another. It provides a
meaningful way to assess how distributions differ
in terms of their shapes and support, capturing
both the location and the spread of the distribu-
tions.

e Monitoring Distribution Changes: Once important vari-
ables are identified, their distributions should be mon-
itored over time. For instance, if a model relies heavily
on income and credit history, any significant shifts in
the distribution of these features (e.g., a sudden in-
crease in low-income borrowers due to economic con-
ditions) could impact the model’s ability to accurately
assess credit risk.

e Thresholds for Drift Detection: Establishing thresholds
for acceptable levels of drift in key variables can help
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in proactive monitoring. If the distance between the
feature’s current distribution and its historical distri-
bution (as determined by Jensen-Shannon Divergence
or Wasserstein Distance) exceeds a defined threshold,
it can trigger a review of the model to determine if
recalibration or retraining is necessary.

Using Information for Model Improvement: The insights
gained from variable distributions and their impor-
tance can also inform model improvement strategies.
This includes:

— Feature Engineering: Understanding how the dis-
tributions of key variables change can lead to new
feature engineering opportunities. For example,
if the income distribution shifts, creating inter-
action terms between income and other relevant
features (like debt-to-income ratio) could enhance
the model’s predictive power.

— Model Refinement: Insights about important vari-
ables and their relationships with the target vari-
able can guide model adjustments. For example,
if certain variables show increasing divergence in
their distributions, the model might require re-
training or recalibration to accommodate these
changes.

— Segment-Specific Modeling: If analysis reveals that
certain segments (e.g., low-income borrowers) are
particularly sensitive to distribution shifts, banks
may choose to develop segment-specific models

49



that better capture the unique behaviors and risks
associated with those groups. This targeted ap-
proach can enhance overall model accuracy and
robustness. To enhance resilience and ensure per-
formance uniformity across different segments, em-
ploying a Mixture of Experts (MoE) model
can be beneficial. MoE models consist of mul-
tiple expert sub-models, each specializing in dif-
ferent regions of the input space or segments of
the population. By dynamically routing inputs to
the most appropriate expert model based on the
context of the input features, the overall system
can provide tailored predictions that account for
varying behaviors across segments.

Benefits of Mixture of Experts: This ap-
proach allows for improved performance by en-
suring that specific sub-models can better cap-
ture the nuances of particular segments (e.g., low-
income borrowers, high-net-worth individuals) while
the overarching model retains the ability to gen-
eralize across the entire population. MoE mod-
els can also enhance adaptability, as individual
experts can be retrained or updated based on
changes in the data distribution for their specific
segments, maintaining accuracy and reducing the
risk of underfitting or overfitting.

Dynamic Model Updates: Leveraging insights from
distribution changes can inform when to trigger
model updates. By establishing clear criteria based
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on variable importance and distribution shifts,
banks can implement more agile model manage-
ment practices, allowing for timely adjustments
in response to evolving data patterns.

e Environmental Change Adaptation: Resilient models can
adapt to changes in the environment. Economic con-
ditions, regulatory changes, or shifts in customer be-
havior can significantly alter the relationships between
input variables and the target outcome. Regularly
evaluating the model against different scenarios helps
ensure that it remains relevant. For example, if inter-
est rates change dramatically, the relationship between
loan approval rates and income may shift, necessitat-
ing a review of the model’s assumptions and structure.

e Adaptive Maintenance:To enhance resilience, banks should
implement adaptive maintenance strategies that allow
for timely updates to the model. This includes:

— Regular Recalibration: Adjusting model parame-
ters based on new data to reflect recent trends
and changes in input distributions.

— Model Refresh: Periodically retraining the model
with updated datasets to ensure it captures the
latest customer behaviors and economic condi-
tions.

— Continuous Learning: Incorporating mechanisms
for the model to learn from new data continu-
ously, ensuring it remains responsive to changes
in the underlying patterns.
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4 Ongoing Monitoring

Ongoing monitoring is the final and continuous phase in
the model validation process, aimed at ensuring the long-
term performance and reliability of models after deployment.
In banking, this phase is crucial because models operate in
dynamic environments where data distributions, economic
conditions, and regulatory requirements can change over
time. Without proper monitoring, a model that initially per-
forms well may degrade, leading to inaccurate predictions,
increased risk, or regulatory non-compliance. The purpose
of ongoing monitoring is to track model performance, detect
issues early, and initiate corrective actions when necessary.

The core components of ongoing monitoring include con-
tinuous performance evaluation, testing for data drift, and
periodic testing and revalidation to ensure the model re-
mains accurate, robust, and compliant over time.

4.1 Periodic Performance Monitoring

Once a model is deployed in a production environment, pe-
riodic performance monitoring is essential to detect any de-
viations from expected behavior. This involves tracking key
performance metrics in real time or at regular intervals to
ensure the model is functioning correctly.

e Performance Tracking: Banks typically monitor met-
rics such as accuracy, precision, recall, and area under
the curve (AUC) for classification models. These met-
rics are tracked over time to detect any degradation
in performance. For example, if a credit risk model
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begins to produce a higher false positive rate (predict-
ing customers will default when they do not), it could
indicate that the model is no longer reliable.

e Error Analysis: Regular error analysis helps to iden-
tify if specific types of errors, such as false positives or
false negatives, are increasing. This is critical for high-
stakes decisions, such as loan approvals, where mis-
classification can lead to financial losses or customer
dissatisfaction.

e Monitoring of Key Features: In addition to output mon-
itoring, it is important to track the behavior of key
input features. For example, in a credit scoring model,
monitoring the distribution of features like credit score,
income, or debt-to-income ratio can help identify if the
inputs are changing in ways that could affect model
performance.

4.2 Data Drift and Concept Drift Detection

A primary focus of ongoing monitoring is the detection of
data drift (changes in the distribution of input data) and
concept drift (changes in the relationship between inputs
and outputs) (Webb et al) [2016). In banking, these drifts
are particularly important because economic conditions, cus-
tomer behaviors, and regulatory requirements can shift over
time.
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4.2.1 Distribution Shift Detection

Distribution shift refers to changes in the underlying proba-
bility distribution of data over time. These shifts can signif-
icantly affect the performance of machine learning models,
making it crucial to detect them effectively. In this sec-
tion, we provide formal mathematical formulations for var-
ious univariate and multivariate methods for detecting dis-
tribution shift, focusing on CDF-based and PDF-based ap-
proaches. We also discuss multivariate reconstruction error
methods for identifying shifts in more complex datasets.

Univariate Distribution Shift Detection

1. Kolmogorov-Smirnov (KS) Test. The Kolmogorov-Smirnov
test compares the empirical cumulative distribution
functions (CDFs) of two distributions F(z) and G(x)
based on the maximum distance between them.

Dy, =sup|F,(x) - G ()]

where F,(z) and G,,(z) are the empirical CDFs of
the two samples of size n and m, respectively. D, y,
represents the KS statistic, and larger values indicate
greater divergence between the two distributions.

2. Jensen-Shannon Divergence (JSD). The Jensen-Shannon
divergence (JSD) measures the similarity between two
probability density functions (PDFs), P and @, and
is a symmetric and smoothed version of the Kullback-
Leibler (KL) divergence.

ISD(P | Q) = 5 (KL(P || M) + KL(Q || M)
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where M = %(P+Q) and
P(x)
Qz

JSD is bounded between 0 and 1, with 0 indicating
identical distributions.

KL(P || Q) =) P(x)log

. Kullback-Leibler Divergence (KL Divergence). KL di-
vergence quantifies the difference between a reference
probability distribution P(x) and an approximate dis-
tribution Q(x).

P(x)

Q(x)

KL divergence is asymmetric, meaning KL(P || Q) #

KL(P | Q) = ). P(x)log

KL(Q || P), and is unbounded, where larger values
indicate greater divergence.

. Wasserstein Distance (Earth Mover’s Distance). The
Wasserstein distance measures the minimum ”cost” of
transforming one distribution into another by redis-
tributing its probability mass. For univariate distri-
butions, the first-order Wasserstein distance is given
by:

Wi(P.Q) = [ IFr(@) - Fo(@)da

where Fp(z) and Fg(z) are the CDF's of distributions
P and @, respectively.

. Total Variation Distance (TVD). The Total Variation
Distance measures the maximum difference in proba-
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bilities assigned by two distributions.
1
TVD(P.Q) = 5 ¥ IP(x) - Q(@)

It is bounded between 0 and 1, with 0 indicating that
the two distributions are identical.

Multivariate Distribution Shift Detection

1. Energy Distance. Energy distance quantifies the differ-
ence between two multivariate distributions by com-
paring their energy representations. For two distribu-
tions P and @ with random variables X and Y, respec-
tively, and an independent copy X’ of X, the energy
distance is given by:

E(P,Q) = 2E[| X - Y[]-E[|X - X'|] - E[|Y - Y]]

where | - | denotes the Euclidean norm. This formu-
lation captures both the means and variances of the
distributions.

2. Maximum Mean Discrepancy (MMD). MMD measures
the difference between the means of distributions in
a reproducing kernel Hilbert space (RKHS). For two
distributions P and @), the MMD is defined as:

MMD?(P,Q) = Ep[k(X, X ) +Eq[k(Y,Y")]-2Epo[k(X,Y)]

where k is a positive-definite kernel, such as the Gaus-
sian or linear kernel. MMD is particularly useful for
comparing high-dimensional distributions.
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3. Reconstruction Error-based Approach. This approach
evaluates how well the data can be reconstructed. Two
reconstruction methods can be employed:

e PCA that projects data X onto principal compo-
nents and low-dimensional representation X.

e An autoencoder that is a neural network com-
pressing data into a lower-dimensional represen-
tation and then reconstructing it to be X.

In both methods, the reconstruction error is calculated
as:
Reconstruction Error = | X — X 3.

A higher reconstruction error signifies that the data
no longer conforms to the distribution on which the
model was trained.

4. Mahalanobis Distance. Mahalanobis distance accounts
for correlations between variables when measuring the
distance between a point = and a distribution with
mean p and covariance matrix 3:

D (z,1,%) = /(- )87 (2 - 1)

This measure is particularly useful for detecting dis-

tribution shifts in multivariate datasets, as it adjusts
for variance in each direction of the distribution.

Detecting distribution shift is crucial for maintaining the
performance of models, especially in dynamic environments
where data distributions may change. The choice of uni-
variate or multivariate methods depends on the complexity
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of the data and the type of shift being measured. While
univariate methods like the Kolmogorov-Smirnov test and
Jensen-Shannon divergence are effective for simpler data,
multivariate methods such as energy distance, MMD, and
reconstruction error-based approaches are essential for cap-
turing more complex shifts in high-dimensional data.

4.2.2 Concept Drift Detection

Detecting concept drift, which occurs when the relation-
ship between input features and output targets changes over
time, is critical for ensuring the ongoing accuracy of predic-
tive models. To rigorously diagnose concept drift, especially
in the presence of potential input drift (covariate shift), we
propose several methodologies that focus on isolating shifts
in the input-output mapping. This section outlines vari-
ous techniques to detect concept drift, including distribution
comparison, residual analysis, and nearest-neighbor-based
methods.

1. Input Distribution Control via Nearest Neighbor Match-
ing. To distinguish concept drift from input drift, we
propose a method that controls for changes in input
distribution by matching new data to the training,
validation, or test data using a nearest-neighbor ap-
proach. By identifying development data samples that
are similar to new data points in the feature space, we
can create a comparable input distribution across the
two sets. This allows for a focused examination of how
the model’s predictive performance may have changed
due to concept drift.
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e Step 1: Nearest-neighbor selection. For each new
data point, find its nearest neighbors in the de-
velopment data (validation or test set) using dis-
tance metrics such as Euclidean, Mahalanobis, or
embedding-based similarity. This ensures the se-
lected subset of development data has a distribu-
tion similar to the new data.

e Step 2: Residual comparison. After controlling
for input distribution, compute the residuals (i.e.,
the differences between actual and predicted out-
puts) for both the new data and the matched de-
velopment data. Comparing the distribution of
these residuals allows us to detect changes in the
underlying input-output relationship. We apply
statistical tests such as the Kolmogorov-Smirnov
(KS) test, Cramér—von Mises test, or Anderson-
Darling test to quantify whether the residual dis-
tributions from the new data and nearest-neighbor
development data differ significantly. This allows
us to rigorously test for concept drift.

With similar residual distributions, it suggests no con-
cept drift. Performance degradation is likely due to in-
put drift, as the model continues to capture the input-
output relationship correctly but is faced with out-of-
distribution inputs.

With divergent residual distributions: it indicates con-
cept drift, where the model is no longer correctly mod-
eling the relationship between inputs and outputs, even
when controlling for input distribution.
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2. Performance Monitoring Over Time (after Input Drift is
Ruled Out). Once input drift has been ruled out us-
ing nearest-neighbor matching or similar methods, an-
other robust indicator of concept drift is the degra-
dation in model performance metrics (e.g., accuracy,
precision, recall, F1-score, or RMSE) over time. Mon-
itoring these metrics on a held-out test set or using
rolling windows of time-based data enables the detec-
tion of gradual or sudden shifts in the input-output
relationship.

The method of sliding window evaluation is to evalu-
ate the model on successive time windows of new data,
so we can track the stability of performance metrics.
A consistent decline in performance across windows
suggests that the model is encountering drift, either
in the input space (input drift) or the input-output
relationship (concept drift). However, if input drift
has been ruled out via nearest-neighbor matching or
other methods, the decline can be attributed to con-
cept drift.

3. Residual Drift Monitoring (after Input Drift is Ruled Out).
Residuals provide a direct indication of how well the
model captures the true relationship between inputs
and outputs. After ruling out input drift using nearest-
neighbor matching or other methods, monitoring the
residuals over time allows for the detection of con-
cept drift. Shifts in residual distributions—such as
increased variance, systematic bias, or patterns in spe-
cific regions of the input space—can signal that the
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model is no longer aligned with the underlying data-
generating process.

The method of localized drift detection is to account
for localized concept drift (i.e., drift that occurs only
in certain regions of the input space) by segmenting
the input data based on feature importance or cluster
similar input data points. By examining the residu-
als in each segment, we can detect localized shifts in
the input-output mapping, which may not be evident
when analyzing the entire dataset.

. Model Retraining and Comparison. Retraining the model
on more recent data and comparing its performance
to the original model can also reveal concept drift. A
significant improvement in the performance of the re-
trained model on recent data—compared to the origi-
nal model—indicates that the original model no longer
captures the current data distribution, suggesting con-
cept drift.

We propose using paired statistical tests (e.g., paired
t-tests) to rigorously compare the performance of the
original model and the retrained model on the same
test set. A statistically significant difference in pre-
dictions or error rates between the models indicates a
change in the input-output relationship.

. Model Error Tracking in Segments. Segmenting data
based on key features and tracking error rates in these
segments helps identify regions in the input space where
concept drift is more pronounced. By continuously
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monitoring model performance and residuals across
different segments of data, we can pinpoint specific
areas where the input-output relationship has shifted,
enabling early detection of drift in localized contexts.

These concept drift detection methods provide a rigorous
framework for detecting concept drift by isolating changes
in the input-output relationship. By leveraging nearest-
neighbor-based distribution control with validation or test
data, residual analysis, performance monitoring, and retrain-
ing comparisons, we can confidently distinguish between in-
put drift and concept drift. This allows for timely model
updates and ensures continued model reliability in dynamic
environments.

4.3 Periodic Testing and Revalidation

Periodic testing and revalidation are essential compo-
nents of ongoing monitoring to ensure that models remain
fit for purpose over time. This involves formal, scheduled
reviews of the model’s performance and may be triggered
either by routine cycles (e.g., quarterly, annually) or by spe-
cific events, such as significant economic changes or regula-
tory updates.

e Scheduled Periodic Testing: Banks typically establish
regular intervals (e.g., quarterly or annually) to con-
duct periodic testing. This involves running the model
on fresh data that may not have been used in pre-
vious validations. The purpose is to assess whether
the model continues to meet performance standards
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in light of recent data and economic conditions. For
example, a credit scoring model might be tested on
data from the most recent quarter to ensure it still
accurately predicts defaults.

Revalidation in Response to Trigger Events: In some
cases, revalidation may be triggered by specific events,
such as new regulations, significant market changes,
or the discovery of performance issues during routine
monitoring. For example, if the Federal Reserve changes
interest rates, banks may need to revalidate risk mod-
els to account for how these changes impact customer
loan repayment behavior.

Revalidation Process: Revalidation involves a thorough
review of the model, including retraining on new data,
re-assessing assumptions, recalibrating parameters, and
re-evaluating performance metrics. The process also
includes stress testing the model under various eco-
nomic scenarios to ensure that it remains robust and
resilient. This revalidation may involve performing
new rounds of backtesting, conducting cross-validation
with updated datasets, and comparing the model’s
performance against any regulatory benchmarks.

Documentation and Regulatory Reporting: During peri-
odic testing and revalidation, banks must ensure that
the process is well-documented. This includes main-
taining records of any changes to the model, rationale
for those changes, and evidence that the model con-
tinues to meet regulatory and business standards. In
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the context of regulatory guidance, such as SR 11-7,
banks are required to periodically report the results of
their model validation efforts to regulators.

4.4 Adaptive Maintenance and Model Re-
fresh

As part of ongoing monitoring, models may need to undergo
adaptive maintenance, which includes updating model pa-
rameters or retraining the model with new data to reflect
recent trends. This ensures that the model remains relevant
in evolving environments.

e Model Recalibration: Recalibration involves adjusting
model parameters based on new data or changes in
the external environment. For example, in a loan ap-
proval model, recalibration might be necessary if cus-
tomers’ repayment behavior changes due to macroeco-
nomic factors like rising unemployment rates or infla-
tion.

e Model Retraining: In some cases, recalibration may not
be sufficient, and the model may need to be retrained
from scratch. This typically happens when the model
has been operating for an extended period, and sig-
nificant data drift or concept drift has occurred. Dur-
ing retraining, new datasets, including recent customer
behavior or updated economic conditions, are used to
rebuild the model to ensure it remains effective and
accurate.
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e Adaptive Models: Some models, particularly in ma-
chine learning, are designed to be adaptive and can
continuously learn from new data. These online learn-
ing models update their parameters in real-time as new
data becomes available, ensuring that they stay cur-
rent with the latest trends and conditions. However,
the use of adaptive models requires careful monitor-
ing to ensure that they do not inadvertently overfit to
short-term noise or anomalies.

5 Conclusion

Model validation in banking is a complex, multifaceted pro-
cess that plays a crucial role in ensuring the reliability, ac-
curacy, and regulatory compliance of models. As we have
explored in this paper, effective model validation encom-
passes three key components: conceptual soundness evalua-
tion, outcome analysis, and ongoing monitoring.

The conceptual soundness evaluation forms the founda-
tion of model validation, ensuring that models are built on
solid theoretical grounds, use high-quality data, and align
with established financial principles. This stage is critical in
identifying potential issues early in the model development
process, thereby reducing the risk of fundamental flaws in
model design.

Outcome analysis provides a rigorous framework for as-
sessing model performance, identifying weaknesses, and eval-
uating robustness. Through techniques such as performance
decomposition, error analysis, and stress testing, banks can
gain a deep understanding of how their models behave under
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various conditions. This understanding is crucial for build-
ing confidence in model outputs and for identifying areas
where models may need refinement or additional controls.

The ongoing monitoring component recognizes that model
validation is not a one-time event but a continuous process.
In the dynamic world of finance, where economic condi-
tions, customer behaviors, and regulatory requirements are
constantly evolving, continuous vigilance is essential. Tech-
niques for detecting data drift, concept drift, and changes in
model performance help ensure that models remain effective
and relevant over time.

As banking continues to evolve in the digital age, with
increasing reliance on advanced analytics and machine learn-
ing, the importance of robust model validation practices
will only grow. The challenges of maintaining model inter-
pretability and managing the complexities of interconnected
model ecosystems will require ongoing innovation in valida-
tion techniques.

The principles for model validation discussed here are
also applicable to validation of more complex models includ-
ing Generative Al — though the detail testing approaches
will be different. While not discussed here, there are other
critical aspects including fairness (Zhou et al. |2021)), model
safety, security etc. that require important attention and
will be a subject of a separate paper.

In conclusion, effective model validation is essential for
maintaining the integrity of banking operations, ensuring
regulatory compliance, and building trust with customers
and stakeholders. By embracing comprehensive validation
practices that encompass conceptual soundness, rigorous out-
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come analysis, and diligent ongoing monitoring, banks can
harness the power of predictive models while effectively man-
aging the associated risks. As the financial landscape contin-
ues to evolve, so too must the practices of model validation,
adapting to new challenges and opportunities in the pursuit
of robust, reliable, and responsible banking models.
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