Return to page

H2O.ai Blog

Filter By:

20 results Category: Year:
Fine Tuning The H2O Danube2 LLM for The Singlish Language
by Dipam Chakraborty, Kavindu Warnakulasuriya, Jordan Seow | June 03, 2024 H2O Danube, Large Language Models

Read more
Boosting LLMs to New Heights with Retrieval Augmented Generation

Businesses today can make leaps and bounds to revolutionize the way things are done with the use of Large Language Models (LLMs). LLMs are widely used by businesses today to automate certain tasks and create internal or customer-facing chatbots that boost efficiency. Challenges with dynamic adaption of LLMs As with any new hyped-up thing that […]

Read more
A Look at the UniformRobust Method for Histogram Type
by Hannah Tillman, Megan Kurka | July 25, 2023 GBM, H2O-3

Tree-based algorithms, especially Gradient Boosting Machines (GBM’s), are one of the most popular algorithms used. They often out-perform linear models and neural networks for tabular data since they used a boosted approach where each tree built works to fix the error of the previous tree. As the model trains, it is continuously self-corr...

Read more
Testing Large Language Model (LLM) Vulnerabilities Using Adversarial Attacks
by Kim Montgomery, Pramit Choudhary, Michal Malohlava | July 19, 2023 Generative AI, H2O LLM Studio, LLM Limitations, LLM Robustness, LLM Safety, Large Language Models, Responsible AI

Adversarial analysis seeks to explain a machine learning model by understanding locally what changes need to be made to the input to change a model’s outcome. Depending on the context, adversarial results could be used as attacks, in which a change is made to trick a model into reaching a different outcome. Or they could be used as an exp...

Read more
H2O LLM EvalGPT: A Comprehensive Tool for Evaluating Large Language Models
by Srinivas Neppalli, Abhay Singhal, Michal Malohlava | July 19, 2023 Generative AI, Large Language Models, h2oGPT

In an era where Large Language Models (LLMs) are rapidly gaining traction for diverse applications, the need for comprehensive evaluation and comparison of these models has never been more critical. At H2O.ai, our commitment to democratizing AI is deeply ingrained in our ethos, and in this spirit, we are thrilled to introduce our innovati...

Read more
Reducing False Positives in Financial Transactions with AutoML
by Asghar Ghorbani | July 14, 2023 AutoML, Data Science, H2O AI Cloud, H2O Driverless AI, Machine Learning

In an increasingly digital world, combating financial fraud is a high-stakes game. However, the systems we deploy to safeguard ourselves are raising too many false alarms, with over 90% of fraud alerts being false positives. These false positives, not only frustrating for consumers but also costly for financial institutions, can eclipse t...

Read more
Winner's Insight: Navigating the Parkinson's Disease Prediction Challenge with AI
by Parul Pandey | July 03, 2023 AI4Good, Healthcare, Kaggle, Kaggle Grandmasters, Machine Learning

Parkinson’s disease, a condition affecting movement, cognition, and sleep, is escalating rapidly. By 2037, it is projected that around 1.6 million U.S. residents will be confronting this disease, resulting in significant societal and economic challenges. Studies have hinted that disruptions in proteins or peptides could be instrumental in...

Read more
H2O.ai and Snowflake Enable Developers to Train, Deploy, and Score Containerized Software Without Compromising Data Security
by Eric Gudgion | June 27, 2023 H2O Driverless AI, H2O-3, Machine Learning, Snowflake

H2O.ai today announced its participation as a launch partner for Snowflake’s Snowpark Container Services (available in private preview), which provides our joint customers with the flexibility to train, deploy, and score models all within their Snowflake account. This further expands the ease of use for data science teams to create machin...

Read more
H2O Releases 3.40.0.1 and 3.42.0.1
by Marek Novotny, Wendy Wong | June 23, 2023 GBM, GLM, H2O Release, H2O-3, XGBoost

Our new major releases of H2O are packed with new features and fixes! Some of the major highlights of these releases are the new Decision Tree algorithm, the added ability to grid over Infogram, an upgrade to the version of XGBoost and an improvement to its speed, the completion of the maximum likelihood dispersion parameter and its expan...

Read more
H2O LLM DataStudio: Streamlining Data Curation and Data Preparation for LLMs related tasks
by Shivam Bansal, Sanjeepan Sivapiran, Nishaanthini Gnanavel | June 14, 2023 Data, Data Preparation, H2O LLM Studio, Large Language Models, NLP, h2oGPT

A no-code application and toolkit to streamline data preparation tasks related to Large Language Models (LLMs) H2O LLM DataStudio is a no-code application designed to streamline data preparation tasks specifically for Large Language Models (LLMs). It offers a comprehensive range of preprocessing and preparation functions such as text cl...

Read more
Enhancing H2O Model Validation App with h2oGPT Integration
by Parul Pandey | May 17, 2023 Deep Learning, H2O Model Validation, h2oGPT

As machine learning practitioners, we’re always on the lookout for innovative ways to streamline and enhance our processes. What if we could integrate the power of language models into our workflows, especially in the critical phase of model validation? Imagine running validation procedures, interpreting results, or even troubleshooting i...

Read more
Democratization of LLMs
by Sri Ambati | May 08, 2023 H2O LLM Studio, Large Language Models, h2oGPT

Every organization needs to own its GPT as simply as we need to own our data, algorithms and models. H2O LLM Studio democratizes LLMs for everyone allowing customers, communities and individuals to fine-tune large open source LLMs like h2oGPT and others on their own private data and on their servers. Every nation, state and city needs it...

Read more
Building the World's Best Open-Source Large Language Model: H2O.ai's Journey
by Arno Candel | May 03, 2023 Large Language Models, h2oGPT

At H2O.ai, we pride ourselves on developing world-class Machine Learning, Deep Learning, and AI platforms. We released H2O, the most widely used open-source distributed and scalable machine learning platform, before XGBoost, TensorFlow and PyTorch existed. H2O.ai is home to over 25 Kaggle grandmasters, including the current #1. In 2017, w...

Read more
Effortless Fine-Tuning of Large Language Models with Open-Source H2O LLM Studio
by Parul Pandey | May 01, 2023 H2O LLM Studio, Large Language Models

While the pace at which Large Language Models (LLMs) have been driving breakthroughs is remarkable, these pre-trained models may not always be tailored to specific domains. Fine-tuning — the process of adapting a pre-trained language model to a specific task or domain—plays a critical role in NLP applications. However, fine-tuning can be ...

Read more
How Horse Racing Predictions with H2O.ai Saved a Local Insurance Company $8M a Year
by Liz Pratusevich | March 08, 2023 H2O World, Insurance, Machine Learning, Snowflake, Use Cases

In this Technical Track session at H2O World Sydney 2022, SimplyAI’s Chief Data Scientist Matthew Foster explains his journey with machine learning and how applying the H2O framework resulted in significant success on and off the race track. Matthew Foster: I’m Matthew Foster, the Chief Data Scientist for SimplyAI. So, I’m going t...

Read more
Improving Search Query Accuracy: A Beginner's Guide to Text Regression with H2O Hydrogen Torch
by H2O.ai Team | February 28, 2023 Deep Learning, H2O Hydrogen Torch, Machine Learning

Although search engines are vital to our daily lives, they need help understanding complex user queries. Search engines rely on natural language processing (NLP) to understand the intent behind a user’s query and return relevant results. By formulating a well-formed question, users can provide more precise and specific information about w...

Read more

ERROR