Return to page

USE CASE

Predictive Fleet Maintenance

Preventing Vehicle Downtime with AI

Challenges

Organizations that depend on a fleet of vehicles for daily operations understand how crucial it can be to keep them running smoothly. Missed appointment for service providers result in customer churn and lost revenues from new installations. Traditional preventative maintenance processes require vehicles to be repaired at regular intervals based on time or usage. These methods, however, still result in instances of vehicle breakdown resulting in accidents, idle workers, lost revenues and angry customers. In addition, preventative maintenance strategies may replace parts that still have significant working life, which can be a waste of time and money.

Opportunity

AI based predictive maintenance uses a variety of data from IoT sensors imbedded in vehicles, fleet data, weather data, and more to determine which components should be replaced before they break down or cause an accident. AI models can look for patterns in data that indicate failure modes for specific components or generate more accurate predictions of the lifespan for a component given environmental conditions and usage. When specific failure signals are observed, or component aging criteria are met, the components can then be replaced during scheduled maintenance windows. AI systems can even warn drivers and fleet managers that components may fail soon, so that they can take proactive measures to change vehicles to keep scheduled appointments.

Why H2O.ai

The mission at H2O.ai is to democratize AI for all so that more people across industries can use the power of AI to solve business and social challenges. Leading telecommunications brands like Comcast have partnered with H2O.ai to deliver the next generation of solutions powered by H2O technologies. H2O Driverless AI is an award-winning platform for automatic machine learning that empowers data science teams to scale machine learning efforts by dramatically increasing the speed to develop highly accurate predictive models. Driverless AI includes innovative features of particular interest to telecom companies including machine learning interpretability (MLI), reason codes for individual predictions, and automatic time series modeling.

Related Case Studies

quotation mark

We reached 90% accuracy in the real-time deployment and our results were in-sync with the training phase, which was really good..”

Bhavana Bhasker, et al., Data Scientist, Comcast

quotation mark

H2O really shines in model training and scoring and we can do it all without sampling the data.”

Lou Carvalheira, Principal Data Scientist, Cisco

Resources

Learn More About H2O.ai

Request an H2O AI Cloud Demo

We’re here to help you get started with H2O AI Cloud. Our demos will walk you through the capabilities of the platform and AI applications. We will help you determine how H2O AI Cloud can solve your organization’s specific challenges.

Demo Center

Access our in-depth product demos. Watch them all or jump to the product features most relevant to you.