Return to page

Machine Learning with R and H2O

May 2020: Seventh Edition

Contents

SectionTitlePage
1Introduction5
2What is H2O?6
3Installation7
3.1Installing R8
3.2Installing H2O from R8
3.3Example Code9
3.4Citation9
4H2O Initialization9
4.1Launching from R9
4.2Launching from the Command Line11
4.3Launching on Hadoop11
4.4Checking Cluster Status12
5Data Preparation in R12
5.1Notes13
6Models14
6.1Supervised Learning14
6.2Unsupervised Learning15
6.3Miscellaneous15
6.4Modeling Constructs15
7Demo: GLM15
8Data Manipulation in R18
8.1Importing Files18
8.2Uploading Files19
8.3Finding Factors19
8.4Converting to Factors19
8.5Converting Data Frames20
8.6Transferring Data Frames20
8.7Renaming Data Frames21
8.8Viewing Column Names21
8.9Getting Minimum and Maximum Values22
8.10Getting Quantiles22
8.11Summarizing Data23
8.12Summarizing Data in a Table24
8.13Generating Random Numbers25
8.14Splitting Frames26
8.15Getting Frames27
8.16Getting Models27
8.17Listing H2O Objects27
8.18Removing H2O Objects28
8.19Adding Functions28
9Running Models29
9.1Gradient Boosting Machine (GBM)29
9.2Generalized Linear Models (GLM)31
9.3K-means33
9.4Principal Components Analysis (PCA)34
9.5Predictions34
10Appendix: Commands35
10.1Dataset Operations35
10.2General Data Operations36
10.3Methods from Group Generics37
10.4Other Aggregations40
10.5Data Munging40
10.6Data Modeling41
10.7H2O Cluster Operations43
11Acknowledgments45
12References45
13Authors46

To read the eBook, click the download link above.