Return to page

H2O.ai Blog

Filter By:

12 results Category: Year:
How Much is My Property Worth?
by Jo-Fai Chow | May 12, 2021 Community, Deep Learning, Explainable AI, H2O-3, R

Note : this is a guest blog post by Jaafar Almusaad .How Much is My Property Worth?This is the million-dollar question – both figuratively and literally. Traditionally, qualified property valuers are tasked to answer this question. It’s a lengthy and costly process, but more critically, it’s inconsistent and largely subjective. Mind you, ...

Read more
Parallel Grid Search in H2O
by H2O.ai Team | February 04, 2020 Data Science, H2O-3, Machine Learning, Python, R, R-Bloggers, Recommendations, Technical

H2O-3 is, at its core, a platform for distributed, in-memory computing. On top of the distributed computation platform, the machine learning algorithms are implemented. At H2O.ai, we design every operation, be it data transformation, training of machine learning models or even parsing to utilize the distributed computation model. In ord...

Read more
H2O New Year releases
by H2O.ai Team | January 18, 2019 H2O Release, H2O-3, Python, R

There were two releases shortly after each other. First, on December 21st, there was a minor (fix) release 3.22.0.3 . Immediately followed by a more major release (but still on 3.22 branch) codename Xu, named after mathematician Jinchao Xu , whose work is focused on deep neural networks, besides many other fields of research.Of course, th...

Read more
How This AI Tool Breathes New Life Into Data Science

Ask any data scientist in your workplace. Any Data Science Supervised Learning ML/AI project will go through many steps and iterations before it can be put in production. Starting with the question of “Are we solving for a regression or classification problem?” Data Collection & Curation Are there Outliers? What is the Distribu...

Read more
H2O4GPU now available in R
by H2O.ai Team | March 27, 2018 GPU, R

In September, H2O.ai released a new open source software project for GPU machine learning called H2O4GPU . The initial release (blog post here ) included a Python module with a scikit-learn compatible API, which allows it to be used as a drop-in replacement for scikit-learn with support for GPUs on selected (and ever-growing) algorithms. ...

Read more
Stacked Ensembles and Word2Vec now available in H2O!
by H2O.ai Team | February 08, 2017 Data Munging, Ensembles, H2O Release, NLP, Python, R, Technical

Prepared by: Erin LeDell and Navdeep Gill MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} }); Stacked Ensembles ensemble <- h2o.stackedEnsemble(x = x, y = y, training_frame = train, base_models = my_models) Python:ensemble = H2OStackedEnsembleEstimator(base_models=my_models) ensemble.train(x=x, y=y, training...

Read more
Behind the scenes of CRAN
by H2O.ai Team | December 28, 2016 R, R-Bloggers

(Just from my point of view as a package maintainer.) New users of R might not appreciate the full benefit of CRAN and new package maintainers may not appreciate the importance of keeping their packages updated and free of warnings and errors. This is something I only came to realize myself in the last few years so I thought I would write...

Read more
sparklyr: R interface for Apache Spark
by H2O.ai Team | October 07, 2016 Community, R, Sparkling Water

This post is reposted from Rstudio’s announcement on sparklyr – Rstudio’s extension for Spark Connect to Spark from R. The sparklyr package provides a complete dplyr backend. Filter and aggregate Spark datasets then bring them into R for analysis and visualization. Use Spark’s distributed machine learning library from R. Create...

Read more
Hyperparameter Optimization in H2O: Grid Search, Random Search and the Future
by H2O.ai Team | June 16, 2016 R-Bloggers, Technical, Tutorials

“Good, better, best. Never let it rest. ‘Til your good is better and your better is best.” – St. Jerome tl;drH2O now has random hyperparameter search with time- and metric-based early stopping. Bergstra and Bengio[1] write on p. 281: Compared with neural networks configured by a pure grid search, we find that random search over the s...

Read more
Red herring bites
by H2O.ai Team | May 06, 2016 Data Munging, R-Bloggers, Technical

At the Bay Area R User Group in February I presented progress in big-join in H2O which is based on the algorithm in R’s data.table package. The presentation had two goals: i) describe one test in great detail so everyone understands what is being tested so they can judge if it is relevant to them or not; and ii) show how it scales with...

Read more
Fast csv writing for R
by H2O.ai Team | April 24, 2016 Data Munging, R, R-Bloggers, Technical

R has traditionally been very slow at reading and writing csv files of, say, 1 million rows or more. Getting data into R is often the first task a user needs to do and if they have a poor experience (either hard to use, or very slow) they are less likely to progress. The data.table package in R solved csv import convenience and speed in 2...

Read more
Compressing Zip Codes with Generalized Low Rank Models
by H2O.ai Team | December 07, 2015 GLRM, R

This tutorial introduces the Generalized Low Rank Model (GLRM) [1 ], a new machine learning approach for reconstructing missing values and identifying important features in heterogeneous data. It demonstrates how to build a GLRM in H2O that condenses categorical information into a numeric representation, which can then be used in other mo...

Read more

ERROR