October 31st, 2013

0xdata and Yelp – Machine Learning for Relevance and Serendipity/Distributed Gradient Boosting

RSS icon RSS Category: Uncategorized [EN]
Fallback Featured Image

Join us and Yelp for a chat on Machine Learning, and make sure not to miss Sri’s lightning talk on Distributed Gradient Boosting!

Main Talk: Machine Learning for Relevance and Serendipity
Speaker: Aria Haghighi (Prismatic)
Abstract: 
Careful use of well-designed machine learning systems can transform products by providing highly personalized user experiences. Unlike hand-tuned or heuristic-based personalization systems, machine learning allows for the use of millions of different potential indicators when making a decision, and is robust to many types of noise. In this talk, I will discuss our deeply-integrated use of machine learning and natural language processing for content discovery at Prismatic. Our real-time personalization engine is designed to give our users not just the content they expect, but also a healthy dose of targeted serendipity, all based on relevance models learned from users’ interactions with the site. We use sophisticated machine learning techniques for topical classification of stories, to determine story similarity, make topic suggestions, rate the value of different social connections, and ultimately to determine the relevance of a particular story for a particular user. I will go into detail describing our personalized relevance model, starting with a description of our problem formulation, then discussing feature design, model design, evaluation metrics, and our experimental setup which allows quick offline prototyping without forcing users into the role of guinea pig. Our model’s combination of social cues, topical classification, publisher information, and analysis of the user’s prior interactions produces highly-relevant and often delightfully serendipitous content for our users to consume.
Lightning Talk: Distributed Gradient Boosting
Speaker: SriSatish Ambati (0xdata)
Abstract: 
Boosting is a simple yet powerful technique for learning algorithms. We present a distributed gradient boosting algorithm that’s accessible from R and a simple API for roll-your-own Distributed Machine Learning Algorithm for Big Data.
Tentative Schedule:
6:30-7:00 – socializing
7:00-7:20 – lightning talk
7:20-8:30 – main presentation
8:30-9:00 – socializing

Learn more and sign up at http://www.meetup.com/SF-Bayarea-Machine-Learning/events/146775042/?joinFrom=event

Leave a Reply

+
A Brief Overview of AI Governance for Responsible Machine Learning Systems

Our paper “A Brief Overview of AI Governance for Responsible Machine Learning Systems” was recently

November 30, 2022 - by Navdeep Gill, Abhishek Mathur and Marcos V. Conde
+
H2O World Dallas Customer Talks

After three long years of not having an #H2OWorld, we finally held our first one

November 24, 2022 - by Vinod Iyengar
+
New in Wave 0.24.0

Another Wave release has arrived with quite a few exciting new features. Let's quickly go

November 21, 2022 - by Martin Turoci
Fallback Featured Image
+
H2O.ai Raises $40 Million to Democratize Artificial Intelligence for the Enterprise

Series C round led by Wells Fargo and NVIDIA MOUNTAIN VIEW, CA – November 30, 2017

November 20, 2022 - by
+
H2O.ai Placed Furthest in Completeness of Vision in 2021 Gartner Data Science and Machine Learning Magic Quadrant in the Visionaries Quadrant. — Copy

At H2O.ai, our mission is to democratize AI, and we believe driving value from data

November 18, 2022 - by Read Maloney, SVP of Marketing
+
H2O.ai Expands Market Footprint in Healthcare AI by Signing Hackensack Meridian Health and Other Key Providers

We’re excited to attend the HLTH conference this week in Las Vegas, NV. This industry

November 14, 2022 - by Prashant Natarajan

Start Your Free Trial