October 13th, 2020

5 Key Elements to Detecting Fraud Quicker With AI

RSS icon RSS Category: Financial Services, Fraud Detection, H2O Driverless AI

The number of transactions using electronic financial instruments has been increasing by about 23% year over year. The global COVID-19 pandemic has only accelerated that process. Electronic means have become the primary vehicle of how people purchase their goods. With this sudden increase in transactions, fraud detection systems are stressed. They need to be much more accurate, much faster than they currently are. This can be done by optimized models using AI.

Here are the five key takeaways from a recent webinar I hosted on how AI can detect fraud quicker:

  1. Compact vs Comprehensive features. A compact feature that shows speed is better than a comprehensive feature that is slow.
  2. Balance. A balance between the number of features, the type of features, and the complexity of features is important to ensure the model is fast, accurate, and robust.
  3. Apply Zero-Prior Knowledge Features. Having features that have no or little prior knowledge lightens the load on the model and increases the speed of reaching a decision. Using this type of feature becomes imperative when it provides a value similar to a feature that uses prior information to detect fraud.
  4. Build a Simple Model. Keep the model simple and fast. Especially, if you handle transactions in volumes. You will reduce risk by volumes, not by value, which might be efficient.
  5. If GLM works, then use it. The problem tends to increase in complexity when you try to take a complex, comprehensive model to production. A 100+ feature, deep neural network might become complicated to productionize compared to a simple, fast, GLM model that might be equally effective.

Want more details on each key element? Watch the full webinar here 

About the Author

Ashrith Barthur
Ashrith Barthur

Ashrith is the security scientist designing anomalous detection algorithms at H2O. He recently graduated from the Center of Education and Research in Information Assurance and Security (CERIAS) at Purdue University with a PhD in Information security. He is specialized in anomaly detection on networks under the guidance of Dr. William S. Cleveland. He tries to break into anything that has an operating system, sometimes into things that don’t. He has been christened as “The Only Human Network Packet Sniffer” by his advisors. When he is not working he swims and bikes long distances.

Leave a Reply

+
H2O Wave joins Hacktoberfest

It’s that time of the year again. A great initiative by DigitalOcean called Hacktoberfest that aims to bring

September 29, 2022 - by Martin Turoci
+
Three Keys to Ethical Artificial Intelligence in Your Organization

There’s certainly been no shortage of examples of AI gone bad over the past few

September 23, 2022 - by H2O.ai Team
+
Using GraphQL, HTTPX, and asyncio in H2O Wave

Today, I would like to cover the most basic use case for H2O Wave, which is

September 21, 2022 - by Martin Turoci
+
머신러닝 자동화 솔루션 H2O Driveless AI를 이용한 뇌에서의 성차 예측

Predicting Gender Differences in the Brain Using Machine Learning Automation Solution H2O Driverless AI 아동기 뇌인지

August 29, 2022 - by H2O.ai Team
+
Make with H2O.ai Recap: Validation Scheme Best Practices

Data Scientist and Kaggle Grandmaster, Dmitry Gordeev, presented at the Make with H2O.ai session on

August 23, 2022 - by Blair Averett
+
Integrating VSCode editor into H2O Wave

Let’s have a look at how to provide our users with a truly amazing experience

August 18, 2022 - by Martin Turoci

Start Your Free Trial