November 16th, 2014

Competitive Data Science, Kaggle, Kdd and other Sports

RSS icon RSS Category: Uncategorized
Fallback Featured Image

Panelists:

This panel promises to be just brilliant and full of sparks!

Guocong Song https://www.kaggle.com/users/41275/guocong-song
Jose Guerrero https://www.kaggle.com/users/5642/jos-a-guerrero
Mark Landry https://github.com/mlandry22/kaggle/commits/master
Arno Candel http://www.slideshare.net/0xdata/h2o-distributed-deep-learning-by-arno-candel-071614

Bios:

Arno http://fortune.com/2014/08/03/meet-fortunes-2014-big-data-all-stars

Arno is a Physicist & Hacker at 0xdata. Prior to that, he was a founding Senior MTS at Skytree where he designed and implemented high-performance machine learning algorithms. He has over a decade of experience in HPC with C++/MPI and had access to the world’s largest supercomputers as a Staff Scientist at SLAC National Accelerator Laboratory where he participated in US DOE scientific computing initiatives. While at SLAC, he authored the first curvilinear finite-element simulation code for space-charge dominated relativistic free electrons and scaled it to thousands of compute nodes. He also led a collaboration with CERN to model the electromagnetic performance of CLIC, a ginormous e+e- collider and potential successor of LHC. Arno has authored dozens of scientific papers and was a sought-after academic conference speaker. He holds a PhD and Masters summa cum laude in Physics from ETH Zurich. Arno was named “2014 Big Data All-Star” by Fortune Magazine.

Mark Landry

Mark is a Principal Engineer, Software Development at Dell, where he provides modeling and analytical support to the company’s largest early-stage cross-department projects. A frequent Kaggle competitor since 2012, he has finished in the top 20 in six competitions. Experience gained from the platform’s diversity of problems, domains, and solutions has led to success in quickly understanding and modeling business problems at Dell and in health care. Mark is also active in Austin’s machine learning, R, and ACM SIGKDD communities.

Guocong Song

Guocong Song is a Principal Research/Software Engineer at Sharethis. His is top-ranked at Kaggle, where he achieved 5 wins out of 10 data science competitions up to 2014. Before moving to the field of machine learning and Internet, he had been dedicated to wireless communications for a decade. He received IEEE Stephen O. Rice Prize for the best original paper in 2010, and co-authored a book titled “Energy and Spectrum Efficient Wireless Network Design” that will be published by Cambridge University Press in 2014. He holds a Ph.D. in ECE from Georgia Tech and a B.S. from Tsinghua University.

Leave a Reply

+
Developing and Retaining Data Science Talent

It’s been almost a decade since the Harvard Business Review proclaimed that “Data Scientist” is

May 12, 2022 - by Jon Farland
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team Too Hot Encoder

Note: this is a community blog post by Team Too Hot Encoder - one of

May 10, 2022 - by H2O.ai Team
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team HTB

Note: this is a community blog post by Team HTB - one of the H2O.ai

May 10, 2022 - by H2O.ai Team
+
Bias and Debiasing

An important aspect of practicing machine learning in a responsible manner is understanding how models

April 15, 2022 - by Kim Montgomery
+
Comprehensive Guide to Image Classification using H2O Hydrogen Torch

In this article, we will learn how to build state-of-the-art models in computer vision and

March 29, 2022 - by H2O.ai Team
+
H2O Wave Snippet Plugin for PyCharm

Note: this blog post by Shamil Dilshan Prematunga was first published on Medium. What is PyCham? PyCharm

March 24, 2022 - by Shamil Prematunga

Start Your Free Trial