December 15th, 2017

Driverless AI – Introduction, Hands-On Lab and Updates

RSS icon RSS Category: H2O Driverless AI
Fallback Featured Image

#H2OWorld was an incredible experience. Thank you to everyone who joined us!
There were so many fascinating conversations and interesting presentations. I’d love to invite you to enjoy the presentations by visiting our YouTube channel.
Over the next few weeks, we’ll be highlighting many of the talks. Today I’m excited to share two presentations focused on Driverless AI – “Introduction and a Look Under the Hood + Hands-On Lab” and “Hands-On Focused on Machine Learning Interpretability”.

Slides available here.

Slides available here.
The response to Driverless AI has been amazing. We’re constantly receiving helpful feedback and making updates.
A few recent updates include:
Version 1.0.11 (December 12 2017)
– Faster multi-GPU training, especially for small data
– Increase default amount of exploration of genetic algorithm for systems with fewer than 4 GPUs
– Improved accuracy of generalization performance estimate for models on small data (< 100k rows)
– Faster abort of experiment
– Improved final ensemble meta-learner
– More robust date parsing
Version 1.0.10 (December 4 2017)
– Tooltips and link to documentation in parameter settings screen
– Faster training for multi-class problems with > 5 classes
– Experiment summary displayed in GUI after experiment finishes
– Python Client Library downloadable from the GUI
– Speedup for Maxwell-based GPUs
– Support for multinomial AUC and Gini scorers
– Add MCC and F1 scorers for binomial and multinomial problems
– Faster abort of experiment
Version 1.0.9 (November 29 2017)
– Support for time column for causal train/validation splits in time-series datasets
– Automatic detection of the time column from temporal correlations in data
– MLI improvements, dedicated page, selection of datasets and models
– Improved final ensemble meta-learner
– Test set score now displayed in experiment listing
– Original response is preserved in exported datasets
– Various bug fixes
Additional release notes can be viewed here:
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/release_notes.html
If you’d like to learn more about Driverless AI, feel free to explore these helpful links:
– Driverless AI User Guide: http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
– Driverless AI Webinars: https://webinar.com/channel/4a90aa11b48f4a5d8823ec924e7bd8cf
– Latest Driverless AI Docker Download: http://www.h2o.ai/driverless-ai-download/
– Latest Driverless AI AWS AMI: Search for AMI-id : ami-d8c3b4a2
– Stack Overflow: https://stackoverflow.com/questions/tagged/driverless-ai
Want to try Driverless AI? Send us a note.

Leave a Reply

+
Developing and Retaining Data Science Talent

It’s been almost a decade since the Harvard Business Review proclaimed that “Data Scientist” is

May 12, 2022 - by Jon Farland
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team Too Hot Encoder

Note: this is a community blog post by Team Too Hot Encoder - one of

May 10, 2022 - by H2O.ai Team
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team HTB

Note: this is a community blog post by Team HTB - one of the H2O.ai

May 10, 2022 - by H2O.ai Team
+
Bias and Debiasing

An important aspect of practicing machine learning in a responsible manner is understanding how models

April 15, 2022 - by Kim Montgomery
+
Comprehensive Guide to Image Classification using H2O Hydrogen Torch

In this article, we will learn how to build state-of-the-art models in computer vision and

March 29, 2022 - by H2O.ai Team
+
H2O Wave Snippet Plugin for PyCharm

Note: this blog post by Shamil Dilshan Prematunga was first published on Medium. What is PyCham? PyCharm

March 24, 2022 - by Shamil Prematunga

Start Your Free Trial