October 7th, 2021

Feature Transformation with the H2O AI Cloud

RSS icon RSS Category: H2O AI Cloud

It is well known throughout the data science community that data preparation, pre-processing, and feature engineering are one of the most cumbersome parts of the data science workload. So as we continue to innovate here at H2O.ai with our end-to-end automated machine learning (autoML) capabilities, we challenged ourselves to evolve the process of feature engineering into more robust feature transformation.

The H2O AI Cloud enables exploratory data analysis capabilities through automated visualizations and insights. This core functionality allows data scientists to see feature information, interactions, charts and plots to rapidly understand the dataset they are working with. This accelerates the discovery process for data scientists in finding signal driving features and interactions hidden in their data. The H2O AI Cloud enables these dynamic interactions and feature transformations to be extracted automatically, while simultaneously giving users the ability to turn anything off or on at their choosing, enabling full control of the evolutionary algorithm driving data intelligence.

H2O.ai’s proprietary evolutionary algorithm, which is used to quantitatively experiment and test hundreds of combinations and feature transformations to find signals in the noise is running underneath the surface of H2O.ai’s autoML . Some of the robust automatic feature engineering capabilities include:

Numeric Transformers: Interactions, Binning, Clustering, Target Encoding, Weight of Evidence, Truncated SVD, DBSCAN, TNSE, UMAP

Time Series: Date & DateTime, Exponentially Weighted Moving Averages, Lags, Interactions, and Aggregations

Categorical: One Hot Encoding, Cross Validation Target Encoding & Numeric Encoding, Weight of Evidence

Text Transformers: BERT, BiGRU, Text CNN, CharCNN, TFIDF

Time Transformers: Dates (Days, Months, Years, Seconds etc), Holidays

Image Models and Transformers: Image AutoML, Image Vectorizer

The H2O AI Cloud rapidly accelerates the speed at which data scientists and data engineers can analyze and prepare a dataset for modeling, enabling them to make models with more accuracy, speed and transparency.

Learn more about the latest release of H2O AI Cloud 21.10 here.

 

About the Author

Benjamin Cox

Ben Cox is a Director of Product Marketing at H2O.ai where he helps lead Responsible AI market research and thought leadership. Prior to H2O.ai, Ben held data science roles in high-profile teams at Ernst & Young, Nike, and NTT Data. Ben holds a MBA from the University of Chicago Booth School of Business with multiple analytics concentrations and a BS in Economics from the College of Charleston.

Leave a Reply

+
Developing and Retaining Data Science Talent

It’s been almost a decade since the Harvard Business Review proclaimed that “Data Scientist” is

May 12, 2022 - by Jon Farland
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team Too Hot Encoder

Note: this is a community blog post by Team Too Hot Encoder - one of

May 10, 2022 - by H2O.ai Team
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team HTB

Note: this is a community blog post by Team HTB - one of the H2O.ai

May 10, 2022 - by H2O.ai Team
+
Bias and Debiasing

An important aspect of practicing machine learning in a responsible manner is understanding how models

April 15, 2022 - by Kim Montgomery
+
Comprehensive Guide to Image Classification using H2O Hydrogen Torch

In this article, we will learn how to build state-of-the-art models in computer vision and

March 29, 2022 - by H2O.ai Team
+
H2O Wave Snippet Plugin for PyCharm

Note: this blog post by Shamil Dilshan Prematunga was first published on Medium. What is PyCham? PyCharm

March 24, 2022 - by Shamil Prematunga

Start Your Free Trial