March 14th, 2022

Gene Mutation AI and the Future of Cancer Research

RSS icon RSS Category: H2O AI Cloud, Healthcare

A genomics AI solution from Health

Powered by NVIDIA GPUs and NVIDIA AI

Cancer is a multifactorial disease with exact causes we have only recently begun to understand. While inherited germline mutations are understood to create a genetic predisposition to the disease, stochastic accumulation of somatic mutations over a person’s lifespan is usually the culprit when the disease appears and determines its severity. These mutations affect different cellular pathways leading to dysregulation. The cells eventually start to proliferate uncontrollably, creating tumors. At the same time, protective mutations that may exist in the patient’s genetic material are understood to ‘dampen’ the severity or altogether alleviate disease onset.

The stochastic nature of somatic mutations, as well as their largely unknown interactions with protective mutations, are important factors of uncertainty when studying cancer. The availability and reduced cost of high-throughput technologies that can ‘read’ the genetic material of a patient are starting to change that. Using the right statistical tools, we have been able to elucidate many of the most common pathways and underlying genetic causes of malignancies, at least at the population level. The same tools, however, do not lend equal power to personalized diagnosis and prognosis, in a disease that we believe is as varied as the number of people that have it.

Machine learning models can “learn” the relationships between data points in datasets that are too complex for the human brain to understand and organize. Such models have been successful in a variety of health-related problems, including cancer. What is most important: using this new mathematical tool, we can now make inferences at the individual level.

Solution Summary

Gene Mutation AI is a machine learning-powered tumor classification application. Using information about the presence of genic single nucleotide polymorphisms (SNP) in samples derived from patient biopsies, the application allows the user to:

  1. Evaluate the risk of malignancy and understand how common this risk has been among past patients (Driverless AI autoML).
  2. Convert SNP caller results to mutation frequency by pathway.
  3. Find and explore similar patients (based on Euclidean distance).
  4. Identify the cellular pathways that influence cancer malignancy risk (Shapley values).
  5. Explore potential interventions via model-based simulations (individual conditional expectation).
  6. Evaluate the consistency of the predictions among different demographic groups (disparate impact analysis).

Gene Mutation AI can be easily extended to evaluate multiple cancers, biopsy results, and molecule/drug responses. The app allows the user to load models trained with their own data, allowing detection of more types of malignant tumors.

Gene Mutation AI is powered by the H2O AI Cloud: Driverless AI AutoML, H2O-3, MLOps, and Wave©, as well as by NVIDIA GPUs.

About the Author Team

At, democratizing AI isn’t just an idea. It’s a movement. And that means that it requires action. We started out as a group of like minded individuals in the open source community, collectively driven by the idea that there should be freedom around the creation and use of AI.

Today we have evolved into a global company built by people from a variety of different backgrounds and skill sets, all driven to be part of something greater than ourselves. Our partnerships now extend beyond the open-source community to include business customers, academia, and non-profit organizations.

Leave a Reply

Enhancing H2O Model Validation App with h2oGPT Integration

As machine learning practitioners, we’re always on the lookout for innovative ways to streamline and

May 17, 2023 - by Parul Pandey
Building a Manufacturing Product Defect Classification Model and Application using H2O Hydrogen Torch, H2O MLOps, and H2O Wave

Primary Authors: Nishaanthini Gnanavel and Genevieve Richards Effective product quality control is of utmost importance in

May 15, 2023 - by Shivam Bansal
AI for Good hackathon
Insights from AI for Good Hackathon: Using Machine Learning to Tackle Pollution

At, we believe technology can be a force for good, and we're committed to

May 10, 2023 - by Parul Pandey and Shivam Bansal
H2O democratizing LLMs
Democratization of LLMs

Every organization needs to own its GPT as simply as we need to own our

May 8, 2023 - by Sri Ambati
h2oGPT blog header
Building the World’s Best Open-Source Large Language Model:’s Journey

At, we pride ourselves on developing world-class Machine Learning, Deep Learning, and AI platforms.

May 3, 2023 - by Arno Candel
LLM blog header
Effortless Fine-Tuning of Large Language Models with Open-Source H2O LLM Studio

While the pace at which Large Language Models (LLMs) have been driving breakthroughs is remarkable,

May 1, 2023 - by Parul Pandey

Request a Demo

Explore how to Make, Operate and Innovate with the H2O AI Cloud today

Learn More