September 2nd, 2020

Modèles NLP avec BERT

RSS icon RSS Category: H2O Driverless AI, NLP

H2O Driverless AI 1.9 vient de sortir, et je vous propose une série d’articles sur les dernières fonctionnalités innovantes de cette solution d’Automated Machine Learning, en commençant par l’implémentation de BERT pour les tâches NLP

BERT, ou “Bidirectional Encoder Representations from Transformers” est considéré aujourd’hui comme l’état de l’art sur une série de tâches de traitement du langage naturel.

Nos experts NLP Sudalai Rajkumar (SRK)Maximilian Jeblick et Trushant Kalyanpur ont travaillé dur pour implémenter BERT dans la dernière version de DriverlessAI, ce qui permet aux data scientists d’utiliser les techniques NLP à l’état de l’art, avec une variété de modèles et de transformers BERT, directement ‘out-of-the-box’.

Sur cet exemple, ‘airline sentiment’, jeu de données Kaggle bien connu où il s’agit de déterminer le sentiment d’un tweet, négatif, neutre ou positif, les résultats parlent d’eux-mêmes : en utilisant les techniques TF-IDF, puis en utilisant les transformers natifs TensorFlow, et enfin en utilisant BERT, le score ‘logloss’ sur le jeu de test passe de 0.6093 à 0.4066 (plus le score est bas, plus précis est le modèle)

Notons la disponibilité de plusieurs modèles BERT, dont ‘DistilBERT’, plus léger et plus rapide et presque aussi performant, ou encore le modèle ‘camemBERT’ (si si !), pré-entrainé sur un corpus en français.

BERT vient compléter le scope de DriverlessAI en termes de NLP, qui utilisait déjà nativement TensorFlow et des modèles pré-entrainés pour extraire des features numériques à partir des données texte.

Et comme toujours avec DriverlessAI, les utilisateurs peuvent pousser les modèles en production simplement en utilisant les Mojo C++ ou Python, générés par la plateforme.

Pour plus d’informations sur le NLP avec Driverless AI, je vous invite à suivre ce webinar avec SRK, Trushant Kalyanpur et Maximilian Jeblick

About the Author

Badr Chentouf

Leave a Reply

+
Enhancing H2O Model Validation App with h2oGPT Integration

As machine learning practitioners, we’re always on the lookout for innovative ways to streamline and

May 17, 2023 - by Parul Pandey
+
Building a Manufacturing Product Defect Classification Model and Application using H2O Hydrogen Torch, H2O MLOps, and H2O Wave

Primary Authors: Nishaanthini Gnanavel and Genevieve Richards Effective product quality control is of utmost importance in

May 15, 2023 - by Shivam Bansal
AI for Good hackathon
+
Insights from AI for Good Hackathon: Using Machine Learning to Tackle Pollution

At H2O.ai, we believe technology can be a force for good, and we're committed to

May 10, 2023 - by Parul Pandey and Shivam Bansal
H2O democratizing LLMs
+
Democratization of LLMs

Every organization needs to own its GPT as simply as we need to own our

May 8, 2023 - by Sri Ambati
h2oGPT blog header
+
Building the World’s Best Open-Source Large Language Model: H2O.ai’s Journey

At H2O.ai, we pride ourselves on developing world-class Machine Learning, Deep Learning, and AI platforms.

May 3, 2023 - by Arno Candel
LLM blog header
+
Effortless Fine-Tuning of Large Language Models with Open-Source H2O LLM Studio

While the pace at which Large Language Models (LLMs) have been driving breakthroughs is remarkable,

May 1, 2023 - by Parul Pandey

Request a Demo

Explore how to Make, Operate and Innovate with the H2O AI Cloud today

Learn More