April 12th, 2018

Sparkling Water 2.3.0 is now available!

RSS icon RSS Category: Sparkling Water
Fallback Featured Image

Hi Makers!
We are happy to announce that Sparkling Water now fully supports Spark 2.3 and is available from our download page.
If you are using an older version of Spark, that’s no problem. Even though we suggest upgrading to the latest version possible, we keep the Sparkling Water releases for Spark 2.2 and 2.1 up-to-date with the latest version if we are not limited by Spark.
The last release of Sparkling Water contained several important bug fixes. The 3 major bug fixes are:

  • Handle nulls properly in H2OMojoModel. In the previous versions, running predictions on the H2OMojoModel with null values would fail. We now handle the null values as missing values and it no longer fails.

  • We marked the Spark dependencies in our maven packages as provided. This means that we assume that Spark dependencies are always provided by the run-time, which should always be true. This ensures a cleaner and more transparent Sparkling Water environment.

  • In PySparkling, the method as_h2o_frame didn’t issue an alert when we passed in a wrong input type. This method accepts only Spark DataFrames and RDDs, however, some users tried to pass different types and this method ended silently. Now we fail if the user passes a wrong data type to this method.

It is also important to mention that Spark 2.3 removed support for Scala 2.10. We’ve done the same in the release for Spark 2.3. Scala 2.10 is still supported in the older Spark versions.
The latest Sparkling Water versions also integrated with H2O 3.18.0.5 which brings several important fixes. The full change log for H2O 3.18.0.5 is available here and the full Sparkling Water change log can be viewed here.
Thank you!
Kuba
Senior Software Engineer, Sparkling Water Team

Leave a Reply

+
Developing and Retaining Data Science Talent

It’s been almost a decade since the Harvard Business Review proclaimed that “Data Scientist” is

May 12, 2022 - by Jon Farland
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team Too Hot Encoder

Note: this is a community blog post by Team Too Hot Encoder - one of

May 10, 2022 - by H2O.ai Team
+
The H2O.ai Wildfire Challenge Winners Blog Series – Team HTB

Note: this is a community blog post by Team HTB - one of the H2O.ai

May 10, 2022 - by H2O.ai Team
+
Bias and Debiasing

An important aspect of practicing machine learning in a responsible manner is understanding how models

April 15, 2022 - by Kim Montgomery
+
Comprehensive Guide to Image Classification using H2O Hydrogen Torch

In this article, we will learn how to build state-of-the-art models in computer vision and

March 29, 2022 - by H2O.ai Team
+
H2O Wave Snippet Plugin for PyCharm

Note: this blog post by Shamil Dilshan Prematunga was first published on Medium. What is PyCham? PyCharm

March 24, 2022 - by Shamil Prematunga

Start Your Free Trial