Return to page

Deep Learning with H2O

May 2020: Sixth Edition

Contents

SectionTitlePage
1Introduction5
2What is H2O?5
3Installation6
3.1Installation in R7
3.2Installation in Python7
3.3Pointing to a Different H2O Cluster8
3.4Example Code8
3.5Citation9
4Deep Learning Overview9
5H2O’s Deep Learning Architecture10
5.1Summary of Features11
5.2Training Protocol12
5.2.1Initialization12
5.2.2Activation and Loss Functions12
5.2.3Parallel Distributed Network Training15
5.2.4Specifying the Number of Training Samples17
5.3Regularization18
5.4Advanced Optimization18
5.4.1Momentum Training19
5.4.2Rate Annealing19
5.4.3Adaptive Learning20
5.5Loading Data20
5.5.1Data Standardization/Normalization20
5.5.2Convergence-based Early Stopping21
5.5.3Time-based Early Stopping21
5.6Additional Parameters21
6Use Case: MNIST Digit Classification22
6.1MNIST Overview22
6.2Performing a Trial Run25
6.2.1N-fold Cross-Validation27
6.2.2Extracting and Handling the Results28
6.3Web Interface31
6.3.1Variable Importances31
6.3.2Java Model33
6.4Grid Search for Model Comparison33
6.4.1Cartesian Grid Search34
6.4.2Random Grid Search35
6.5Checkpoint Models37
6.6Achieving World-Record Performance41
6.7Computational Performance41
7Deep Autoencoders42
7.1Nonlinear Dimensionality Reduction42
7.2Use Case: Anomaly Detection43
7.2.1Stacked Autoencoder46
7.2.2Unsupervised Pretraining with Supervised Fine-Tuning46
8Parameters46
9Common R Commands53
10Common Python Commands53
11Acknowledgments53
12References54
13Authors55

To read the eBook, click the download link above.