Return to page


Pricing Optimization

Maximizing Profits with AI


With retail assortments growing, increasing turnover and with many cases with decreasing store footprints, retailers need new ways to generate profits. Pricing for retailers has typically been driven from the corporate level by established pricing guidelines and competition. Markdowns for many retailers are driven by tried and true techniques with x% at 6 weeks, y% at 8 weeks etc. These traditional methods are insufficient to compete with new online or omni-channel competitors who are better positioned to capture profits through careful price management.


AI is ideal for situations where a retailer needs to optimize across a wide assortment of items based on a variety of factors. AI models can be used to determine the best price for each item using data on seasonality and price elasticity along with real-time inputs on inventory levels and competitive products and prices. The result is more careful markdowns on specific colors or versions to a very specific price to increase demand and maximize profits. Marginal price increases are also possible on some items to capture demand from trends. AI can also be used to provide reasons for pricing suggestions that indicate the key factors when making the pricing suggestion. This is helpful to retailers who want to know why particular items are being suggested for markdowns.


The mission at is to democratize AI for all so that more people across industries can use the power of AI to solve business and social challenges. Leading retail brands like Macy’s, Walgreens, eBay and HEB and more use technology to forecast product demand, create personalized customer experiences, and drive advanced inventory planning. H2O Driverless AI is an award-winning platform for automatic machine learning that empowers data science teams to scale machine learning efforts by dramatically increasing the speed to develop highly accurate predictive models. Driverless AI includes innovative features of particular interest to retail brands including machine learning interpretability (MLI), reason codes for individual predictions, and automatic time series modeling.

Related Case Studies

quotation mark

With H2O we are able to build models quickly so we can find patterns that we can use right away.”

Daqing Zhao, Director, Advanced Analytics, Macy's
quotation mark

H2O allowed us to interface directly with our existing application and it scales for our massive data set. There is nothing else like it.”

Satya Satyamoorthy, Director of Software Development, Nielsen Catalina Solutions


Learn More About

Request an H2O AI Cloud Demo

We’re here to help you get started with H2O AI Cloud. Our demos will walk you through the capabilities of the platform and AI applications. We will help you determine how H2O AI Cloud can solve your organization’s specific challenges.

Demo Center

Access our in-depth product demos. Watch them all or jump to the product features most relevant to you.