Return to page

BLOG

What is new in Sparkling Water 2.0.3 Release?

 headshot

By H2O.ai Team | minute read | January 05, 2017

Blog decorative banner image

This release has H2O core – 3.10.1.2

Important Feature:

This architectural change allows to connect to existing h2o cluster from sparkling water. This has a benefit that we are no longer affected by Spark killing it’s executors thus we should have more stable solution in environment with lots of h2o/spark node. We are working on article on how to use this very important feature in Sparkling Water 2.0.3.
Release notes: https://0xdata.atlassian.net/secure/ReleaseNote.jspa?projectId=12000&version=16601 

2.0.3 (2017-01-04)

  • Bug
    • SW-152 – ClassNotFound with spark-submit
    • SW-266 – H2OContext shouldn’t be Serializable
    • SW-276 – ClassLoading issue when running code using SparkSubmit
    • SW-281 – Update sparkling water tests so they use correct frame locking
    • SW-283 – Set spark.sql.warehouse.dir explicitly in tests because of SPARK-17810
    • SW-284 – Fix CraigsListJobTitlesApp to use local file instead of trying to get one from hdfs
    • SW-285 – Disable timeline service also in python integration tests
    • SW-286 – Add missing test in pysparkling for conversion RDD[Double] -> H2OFrame
    • SW-287 – Fix bug in SparkDataFrame converter where key wasn’t random if not specified
    • SW-288 – Improve performance of Dataset tests and call super.afterAll
    • SW-289 – Fix PySparkling numeric handling during conversions
    • SW-290 – Fixes and improvements of task used to extended h2o jars by sparkling-water classes
    • SW-292 – Fix ScalaCodeHandlerTestSuite
  • New Feature
    • SW-178 – Allow external h2o cluster to act as h2o backend in Sparkling Water
  • Improvement
    • SW-282 – Integrate SW with H2O 3.10.1.2 ( Support for external cluster )
    • SW-291 – Use absolute value for random number in sparkling-water in internal backend
    • SW-295 – H2OConf should be parameterized by SparkConf and not by SparkContext

Please visit https://community.h2o.ai to learn more about it, provide feedback and ask for assistance as needed.
@avkashchauhan | @h2oai

 headshot

H2O.ai Team

At H2O.ai, democratizing AI isn’t just an idea. It’s a movement. And that means that it requires action. We started out as a group of like minded individuals in the open source community, collectively driven by the idea that there should be freedom around the creation and use of AI.

Today we have evolved into a global company built by people from a variety of different backgrounds and skill sets, all driven to be part of something greater than ourselves. Our partnerships now extend beyond the open-source community to include business customers, academia, and non-profit organizations.