Return to page

H2O.ai Blog

Filter By:

31 results Category: Year:
Building a Fraud Detection Model with H2O AI Cloud

In a previous article [1], we discussed how machine learning could be harnessed to mitigate fraud. This time, we’ll delve into a step-by-step guide on leveraging H2O AI Cloud to construct efficient fraud detection models. We’ll tackle this process in three critical stages: build, operate, and detect. First, we’ll utilize Driverless AI in ...

Read more
Reducing False Positives in Financial Transactions with AutoML
by Asghar Ghorbani | July 14, 2023 AutoML, Data Science, H2O AI Cloud, H2O Driverless AI, Machine Learning

In an increasingly digital world, combating financial fraud is a high-stakes game. However, the systems we deploy to safeguard ourselves are raising too many false alarms, with over 90% of fraud alerts being false positives. These false positives, not only frustrating for consumers but also costly for financial institutions, can eclipse t...

Read more
10 Consejos para Convertirte en un Científico de Datos Exitoso
by Favio Vazquez | January 19, 2023 AutoML, Beginners, Data Science

La ciencia de datos llegó para quedarse. Los científicos de datos utilizan sus habilidades para ayudar a las empresas a tomar mejores decisiones sobre sus productos, servicios, a optimizar procesos, ahorrar y mejorar rentabilidad. Convertirse en un científico de datos de éxito implica muchos aspectos y el estudio continuo, ya que es un...

Read more
H2O Release 3.36 (Zorn)
by Michal Kurka | January 07, 2022 AutoML, H2O Release, H2O-3

There’s a new major release of H2O, and it’s packed with new features and fixes! Among the big new features in this release are Distributed Uplift Random Forest, an algorithm typically used in marketing and medicine to model uplift, and Infogram, a new research direction in machine learning that focuses on interpretability and fairness in...

Read more
AI-Driven Predictive Maintenance with H2O AI Cloud
by Parul Pandey, Asghar Ghorbani | August 02, 2021 AutoML, H2O AI Cloud, Machine Learning Interpretability, Manufacturing

According to a study conducted by Wall Street Journal , unplanned downtime costs industrial manufacturers an estimated $50 billion annually. Forty-two percent of this unplanned downtime can be attributed to equipment failure alone. These downtimes can cause unnecessary delays and, as a result, affect the business. A better and superior al...

Read more
The Emergence of Automated Machine Learning in Industry
by Parul Pandey | June 30, 2021 AutoML, Company

This post was originally published by K-Tech, Centre of Excellence for Data Science and AI, powered by NASSCOM. The link of the post can be found here. The concept of Automated Machine Learning has gained much traction recently. Automated Machine Le...

Read more
Shapley summary plots: the latest addition to the H2O.ai’s Explainability arsenal
by Parul Pandey | April 21, 2021 AutoML, H2O Driverless AI, Machine Learning Interpretability

It is impossible to deploy successful AI models without taking into account or analyzing the risk element involved. Model overfitting, perpetuating historical human bias, and data drift are some of the concerns that need to be taken care of before putting the models into production. At H2O.ai, explainability is an integral part of our ML ...

Read more
H2O AI Cloud: Democratizing AI for Every Person and Every Organization

Harnessing AI’s true potential by enabling every employee, customer, and citizen with sophisticated AI technology and easy-to-use AI applications. Democratization is an essential step in the development of AI, and AutoML technologies lie at the heart of it. AutoML tools have played a pivotal role in transforming the way we consume an...

Read more
Mitos e verdades sobre o AutoML
by Alan Silva, Bruna Smith | November 10, 2020 AutoML, Beginners, Business, Community, Machine Learning

Todas as revoluções que tivemos até hoje, tanto as tecnológicas quanto industriais, possuem uma semelhança: elas estão ligadas à forma como os seres humanos lidam com as máquinas. Antes, os processos eram feitos de forma muito manual e, com o tempo, acabaram sofrendo uma evolução natural voltada para a automação. Com o aprendizado de máqu...

Read more
Combining the power of KNIME and H2O.ai in a single integrated workflow
by Rafael Coss, Stefan Pacinda | October 14, 2020 AutoML, Community, H2O Driverless AI, Partners, Technical, Tutorials

KNIME and H2O.ai , the two data science pioneers known for their open source platforms, have partnered to further democratize AI. Our approaches are about being open, transparent, and pushing the leading edge of AI. We believe strongly that AI is not for the select few but for everyone. We are taking another step in democratizing AI by ...

Read more
The Challenges and Benefits of AutoML
by Eve-Anne Trehin | October 14, 2020 AutoML, H2O Driverless AI, Machine Learning, Responsible AI

Machine Learning and Artificial Intelligence have revolutionized how organizations are utilizing their data. AutoML or Automatic Machine Learning automates and improves the end-to-end data science process. This includes everything from cleaning the data, engineering features, tuning the model, explaining the model, and deploying it into p...

Read more
The Benefits of Budget Allocation with AI-driven Marketing Mix Models
by Michael Proksch | September 17, 2020 AutoML, Business, Customers, GBM, GLM, Machine Learning, Solutions

Excerpt of the white paper: “The Latest in AI Technologies Reinvent Media and Marketing Analytics @ Allergan” Authors: Akhil Sood, Associate Director @ Marketing Sciences, Allergan Dr. Michael Proksch, Senior Director @ H2o.ai Vijay Raghavan, Associate Vice President @ Marketing Sciences, AllerganIntroductionThe call for accountability in...

Read more
Exploring the Next Frontier of Automatic Machine Learning with H2O Driverless AI
by Jo-Fai Chow | July 28, 2020 AutoML, H2O Driverless AI

At H2O.ai, it is our goal to democratize AI by bridging the gap between the State-of-the-Art (SOTA) in machine learning and a user-friendly, enterprise-ready platform. We have been working tirelessly to bring the SOTA from Kaggle competitions to our enterprise platform Driverless AI since its very first release. The growing list of Driver...

Read more
Insights From the New 2020 Gartner Magic Quadrant For Cloud AI Developer Services

We are excited to be named a Visionary in the new Gartner Magic Quadrant for Cloud AI Developer Services (Feb 2020), and have been recognized for both our completeness of vision and ability to execute in the emerging market for cloud-hosted artificial intelligence (AI) services for application developers. This is the second Gartner MQ tha...

Read more
AI & ML Platforms: My Fresh Look at H2O.ai Technology

2020: A new year, a new decade, and with that, I’m taking a new and deeper look at the technology H2O.ai offers for building AI and machine learning systems. I’ve been interested in H2O.ai since its early days as a company (it was 0xdata back then) in 2014. My involvement had been only peripheral, but now I’ve begun to work with this comp...

Read more
Key Takeaways from the 2020 Gartner Magic Quadrant for Data Science and Machine Learning

We are named a Visionary in the Gartner Magic Quadrant for Data Science and Machine Learning Platforms (Feb 2020). We have been positioned furthest to the right for completeness of vision among all the vendors evaluated in the quadrant. So let’s walk you through the key strengths of our machine learning platforms. Automatic Machine Learn...

Read more
Grandmaster Series: How a Passion for Numbers Turned This Mechanical Engineer into a Kaggle Grandmaster
by Parul Pandey | January 23, 2020 AutoML, Community, Company, Data Science, H2O Driverless AI, Kaggle, Makers, NLP

In conversation with Sudalai Rajkumar: A Kaggle Double Grandmaster and a Data Scientist at H2O.aiIt is rightly said that one should never seek praise. Instead, let the effort speak for itself. One of the essential traits of successful people is to never brag about their success but instead keep learning along the way. In the data science ...

Read more
Scalable AutoML in H2O
by Sanyam Bhutani | November 27, 2019 AutoML, H2O World, Machine Learning, Technical

Note: I’m grateful to Dr. Erin LeDell for the suggestions, corrections with the writeup. All of the images used here are from the talks’ slides. Erin Ledell’s talk was aimed at AutoML : Automated Machine Learning , broadly speaking, followed by an overview of H2O’s Open Source Project and the library. H2O AutoML provides an easy-to-use ...

Read more
A Deep Dive into H2O’s AutoML
by Parul Pandey | October 16, 2019 AutoML, H2O-3, Technical

The demand for machine learning systems has soared over the past few years. This is majorly due to the success of Machine Learning techniques in a wide range of applications. AutoML is fundamentally changing the face of ML-based solutions today by enabling people from diverse backgrounds to use machine learning models to address complex ...

Read more
Make your own AI — Add Your Game to Auto-ML Models
by Karthik Guruswamy | October 15, 2019 AutoML, H2O Driverless AI, Machine Learning, Technical

When Features and Algorithms compete, your Business Use Case(s) wins! H2O Driverless AI is an Automatic Feature Engineering /Machine Learning platform to build AI/ML models on tabular data. Driverless AI can build supervised learning models for Time Series forecasts, Regression , Classification , etc. It supports a myriad of built-i...

Read more
Mitigating Bias in AI/ML Models with Disparate Impact Analysis
by Karthik Guruswamy | August 02, 2019 AutoML, H2O Driverless AI, Machine Learning Interpretability

Everyone understands that the biggest plus of using AI/ML models is a better automation of day-to-day business decisions, personalized customer service, enhanced user experience, waste elimination, better ROI, etc. The common question that comes up often though is — How can we be sure that the AI/ML decisions are free from bias/discrimina...

Read more
Custom Machine Learning Recipes: The ingredients for success
by Parul Pandey | July 23, 2019 AutoML, Data Science, H2O Driverless AI, Machine Learning

Last updated: 07/23/19Machine learning is akin to cooking in several ways. A perfect dish originates from a tried-and-tested recipe, has the right combination of ingredients, and is baked at just the right temperature. Successful AI solutions work on the same principle. One needs fresh and right quality ingredients in the form of data, ...

Read more
Toward AutoML for Regulated Industry with H2O Driverless AI

Predictive models in financial services must comply with a complex regime of regulations including the Equal Credit Opportunity Act (ECOA), the Fair Credit Reporting Act (FCRA), and the Federal Reserve’s S.R. 11-7 Guidance on Model Risk Management. Among many other requirements, these and other applicable regulations stipulate predictive ...

Read more
Boosting your ROI with AutoML & Automatic Feature Engineering
by Karthik Guruswamy | February 25, 2019 AutoML, Machine Learning

If your business has started using AI/ML tools or just started to think about it, this blog is for you. Whether you are a data scientist, VP of data science or a line of a business owner, you are probably wondering how AI will impact your organization in various ways or why your current strategies are not working somehow. If you are not ...

Read more
Launching the Academic Program … OR ... What Made My First Four Weeks at H2O.ai so Special!

We just launched the H2O.ai Academic Program at our sold-out H2O World London. With nearly 1000 people in attendance, we received the first online sign-up forms submitted by professors and students alike. This program will massively democratize AI in academia, increasing the number of AI-skilled graduates – with both technical and busine...

Read more
The different flavors of AutoML
by Erin LeDell | August 15, 2018 AutoML, Data Science, H2O Driverless AI, H2O-3

In recent years, the demand for machine learning experts has outpaced the supply, despite the surge of people entering the field. To address this gap, there have been big strides in the development of user-friendly machine learning software (e.g. H2O , scikit-learn , keras ). Although these tools have made it easy to train and evaluate ma...

Read more
H2O’s AutoML in Spark
by Jakub Hava | July 23, 2018 AutoML, Sparkling Water, Technical, Tutorials

This blog post demonstrates how H2O’s powerful automatic machine learning can be used together with the Spark in Sparkling Water.We show the benefits of Spark & H2O integration, use Spark for data munging tasks and H2O for the modelling phase, where all these steps are wrapped inside a Spark Pipeline. The integration between Spark and...

Read more
Sparkling Water 2.2.10 is now available!
by H2O.ai Team | March 22, 2018 AutoML, Sparkling Water

Hi Makers! There are several new features in the latest Sparkling Water. The major new addition is that we now publish Sparkling Water documentation as a website which is available here . This link is for Spark 2.2. We have also documented and fixed a few issues with LDAP on Sparkling Water. Exact steps are provided in the documentation...

Read more
New features in H2O 3.18
by H2O.ai Team | February 22, 2018 AutoML, Ensembles, H2O Release, XGBoost

Wolpert Release (H2O 3.18)There’s a new major release of H2O and it’s packed with new features and fixes! We named this release after David Wolpert , who is famous for inventing Stacking (aka Stacked Ensembles ). Stacking is a central component in H2O AutoML , so we’re very grateful for his contributions to machine learning! He is also fa...

Read more
Driverless AI Blog
by H2O.ai Team | July 13, 2017 AutoML, GPU, H2O Driverless AI

In today’s market, there aren’t enough data scientists to satisfy the growing demand for people in the field. With many companies moving towards automating processes across their businesses (everything from HR to Marketing), companies are forced to compete for the best data science talent to meet their needs. A report by McKinsey says th...

Read more
Scalable Automatic Machine Learning: Introducing H2O's AutoML
by H2O.ai Team | June 21, 2017 AutoML, Ensembles, H2O Release, Technical

Prepared by: Erin LeDell, Navdeep Gill & Ray Peck In recent years, the demand for machine learning experts has outpaced the supply, despite the surge of people entering the field. To address this gap, there have been big strides in the development of user-friendly machine learning software that can be used by non-experts and experts...

Read more

ERROR